Geometry Review

Take - Up
1. Determine the measure of each missing interior angle.

\[\alpha + 87 + 57 = 180 \]
\[\alpha + 144 = 180 \]
\[\alpha = 180 - 144 \]
\[\alpha = 36^\circ \]

\[b + 103 + 83 + 26 = 360 \]
\[b + 26 = 360 \]
\[b = 360 - 262 \]
\[b = 98^\circ \]

\[C + 112 + 103 + 145 + 87 + 156 = 720 \]
\[C + 603 = 720 \]
\[C = 720 - 603 \]
\[C = 117^\circ \]
(d) \[
\angle d + 159 + 147 + 129 + 144 + 73 + 150 = 900 \\
\angle d + 802 = 900 \\
\angle d = 900 - 802 \\
\angle d = 98^\circ
\]

(e) \[
\angle e + 137 + 85 + 141 + 97 = 540 \\
\angle e + 460 = 540 \\
\angle e = 540 - 460 \\
\angle e = 80^\circ
\]

(f) \[
\angle f + 90 + 143 + 163 + 90 + 165 = 720 \\
\angle f + 651 = 720 \\
\angle f = 720 - 651 \\
\angle f = 69^\circ
\]
2. Determine the measure of the interior angles of each figure.
 a) a regular 12-gon
 b) a regular 15-gon
 c) a regular 20-gon

\[
\begin{align*}
\text{Sum of } & = (n-2) \times 180 \\
\text{I.A.} & = \frac{\text{Sum}}{n} \\
\text{12-gon} & = 10 \times 180 \\
& = 1800 \\
\text{one I.A.} & = \frac{1800}{12} \\
& = 150^\circ \\
\text{15-gon} & = 13 \times 180 \\
\text{one I.A.} & = \frac{2340}{15} \\
& = 156^\circ \\
\text{20-gon} & = 18 \times 180 \\
\text{one I.A.} & = \frac{3240}{20} \\
& = 162^\circ
\end{align*}
\]
3. Each interior angle \(a \) in a regular \(n \)-gon has a measure of \(a = 20n \). How many sides does the polygon have?

3 sides \(\rightarrow \) I.A. = 60°

Check \(60 = 20(3) \)

60 = 60 \(\checkmark \)

4 sides \(\rightarrow \) I.A. = 90°

Check \(90 = 20(4) \)

90 = 80 \(\times \)

5 sides \(\rightarrow \) I.A. = 108°

Check \(108 = 20(5) \)

108 = 100 \(\times \)

6 sides \(\rightarrow \) I.A. = 120°

Check \(120 = 20(6) \)

120 = 120 \(\checkmark \)
4. Determine the measure of each missing angle. Support your answer with mathematical reasoning.

a)

Co-interior angles:

\[\Rightarrow \text{add to } 180^\circ \]

b)

Using supplementary angles:

\[b + 115 = 180 \]
\[b = 180 - 115 \]
\[b = 65^\circ \]

\[a = 115^\circ \text{ (alternate "2")} \]

\[c + 106 + 126 + 68 = 360 \]
\[c + 300 = 360 \]
\[c = 360 - 300 \]
\[c = 60^\circ \]
Supplementary
\[\angle + 92 = 180 \]
\[\angle = 180 - 92 \]
\[\angle = 88^\circ \]
\[d + 63 + 88 = 180 \]
\[d + 151 = 180 \]
\[d = 180 - 151 \]
\[d = 29^\circ \]

\[\angle + 123 + 47 + 120 + 107 = 540 \]
\[\angle + 447 = 540 \]
\[\angle = 540 - 447 \]
\[\angle = 93^\circ \]

\[e + 93 = 180 \]
\[e = 180 - 93 \]
\[e = 87^\circ \]
6. Complete the table for each regular polygon.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Measure of Each Interior Angle</th>
<th>Measure of Each Exterior Angle</th>
<th>Sum of Interior Angles</th>
<th>Sum of Exterior Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>90°</td>
<td>90°</td>
<td>360°</td>
<td>360°</td>
</tr>
<tr>
<td>D</td>
<td>108°</td>
<td>72°</td>
<td>540°</td>
<td>360°</td>
</tr>
<tr>
<td>E</td>
<td>120°</td>
<td>60°</td>
<td>720°</td>
<td>360°</td>
</tr>
<tr>
<td>B</td>
<td>135°</td>
<td>45°</td>
<td>1080°</td>
<td>360°</td>
</tr>
</tbody>
</table>

\[
\text{Sum of I.A.} = (n-2) \times 180
\]
\[
\text{one I.A.} = \frac{\text{sum of I.A.}}{n}
\]
\[
\text{one E.A.} = 180 - \text{one I.A.} \left(\frac{\text{OR}}{360}\right)
\]
\[
\text{sum of E.A.} = 360° \left(\text{one E.A.} \times n\right)
\]
7. Determine the measure of each missing angle.

a) \(\angle BDC = 30^\circ \)

 Alternate angle (\(\angle Z \))

 DE bisects \(\angle BDC \)

 \(\angle EDC = \frac{\angle BDC}{2} \)

 \(= \frac{30}{2} = 15^\circ \)

 Isosceles \(\triangle \)

 \(\angle A = 15^\circ \)

 \(x + 15 + 15 = 180 \)

 \(x + 30 = 180 \)

 \(x = 180 - 30 \)

 \(x = 150^\circ \)

 Note: Equal sides meet at the “odd” angle. The other two are the equal angles.
Supplementary
\[\Delta + 120 = 180 \]
\[\Delta = 180 - 120 \]
\[\Delta = 60^\circ \]

Angles in a \(\Delta \)
\[\Delta + 20 + 60 = 180 \]
\[\Delta + 80 = 180 \]
\[\Delta = 180 - 80 \]
\[\Delta = 100^\circ \]

Supplementary
\[\Delta + 100 = 180 \]
\[\Delta = 180 - 100 \]
\[\Delta = 80^\circ \]

Isosceles \(\Delta \)
\[\Rightarrow \Delta = 80^\circ \]

Angles in \(\Delta \)
\[\Rightarrow x + 80 + 80 = 180 \]
\[x + 160 = 180 \]
\[x = 180 - 160 \]
\[x = 20^\circ \]

Regular octagon
\[E.A. = \frac{360}{n} \]
\[y = \frac{360}{8} \]
\[y = 45^\circ \]

I.A. = 180 - E.A.
\[x = 180 - 45 \]
\[x = 135^\circ \]
1. Calculate the missing angle in each case.

a) \[a + 109 + 82 + 37 = 360 \]
\[a + 228 = 360 \]
\[a = 360 - 228 \]
\[a = 132^\circ \]

b) \[b + 135 + 93 + 159 + 102 = 540 \]
\[b + 491 = 540 \]
\[b = 540 - 491 \]
\[b = 49^\circ \]
2. Bob claims that the sum of the interior angles of a regular octagon is 900°. Is he correct? Justify your decision.

\[
\text{sum of I.A.} = (n-2) \times 180 \\
= (8-2) \times 180 \\
= 6 \times 180 \\
= 1080°
\]

No, Bob is incorrect. The sum of the I.A. for a regular octagon is 1080°.
3. The formula for calculating the sum of the interior angles of any n-gon is $(n - 2) \times 180^\circ$.

a) Explain why 2 is subtracted from n.

b) Explain why $(n - 2)$ is multiplied by 180°.

a) Subtract 2 because the non-intersecting diagonals create two less triangles than side lengths.

b) Multiply by 180° because there is 180° in one triangle.
4. a) Calculate the measure of each interior angle of a regular 25-gon.

b) What is the measure of each exterior angle?

\[
\text{Sum of I.A.} = (n-2) \times 180 = (25-2) \times 180 = 23 \times 180 = 4140 \\
\text{One I.A.} = \frac{4140}{25} = 165.6^\circ
\]

\[
\text{One E.A.} = 180 - \text{I.A.} = 180 - 165.6^\circ = 14.4^\circ
\]
5. Find the value of each unknown.

a) \[\text{Sum of E.A.} = 360 \]
\[x + 120 + 85 = 360 \]
\[x + 205 = 360 \]
\[x = 360 - 205 \]
\[x = 155^\circ \]

b) \[\text{Heptagon} \]
\[\text{Sum} = (n-2) \times 180 \]
\[\text{of I.A.} \]
\[= (7-2) \times 180 \]
\[= 5 \times 180 \]
\[= 900^\circ \]
\[\text{one I.A.} = \frac{\text{Sum of I.A.}}{n} \]
\[= \frac{900}{7} \]
\[= 128.57^\circ \]
Supplementary

\[\angle A + 162 = 180 \]
\[\angle A = 180 - 162 \]
\[\angle A = 18^\circ \]

\[x + 65 + 18 = 180 \]
\[x + 83 = 180 \]
\[x = 180 - 83 \]
\[x = 97^\circ \]
6. Calculate the value of x in each case.

a) $\Delta + 145 = 180$
 $\Delta = 180 - 145$
 $\Delta = 35^\circ$

 $x + (x-25) + 35 = 180$
 $2x - 25 + 35 = 180$
 $2x + 10 = 180$
 $2x = 170$
 $\frac{2x}{2} = \frac{170}{2}$
 $x = 85^\circ$

b) $x + x + (x-35) + (2x - 75) = 360$

 $5x - 110 = 360$
 $5x = 360 + 110$
 $5x = 470$
 $\frac{5x}{5} = \frac{470}{5}$
 $x = 94^\circ$
1. What is the relationship between the number of sides of a polygon and the number of diagonals that can be drawn from one vertex?

\[\text{# of diagonals} = \text{# of sides} - 2 \]
12. Asad designed a tabletop in the shape of a regular pentagon. His teacher suggested he redesign it as a regular hexagon. By how much would each interior angle change?

A. 12° B. 30° C. 36° D. 180°

Regular pentagon

\[
\text{Sum of } = (n-2) \times 180 \\
\text{I.A. } = (5-2) \times 180 \\
= 3 \times 180 \\
= 540 \\
\text{one I.A. } = \frac{540}{5} \\
= 108^\circ
\]

Regular hexagon

\[
\text{Sum of } = (n-2) \times 180 \\
\text{I.A. } = (6-2) \times 180 \\
= 4 \times 180 \\
= 720^\circ \\
\text{one I.A. } = \frac{720}{6} \\
= 120^\circ
\]

\[\text{Change } = 120^\circ - 108^\circ = 12^\circ \Rightarrow \boxed{A}\]
13. Determine the missing angles in each case.

a) \[\alpha + 83 + 62 = 180 \]
 \[\alpha + 145 = 180 \]
 \[\alpha = 180 - 145 \]
 \[\alpha = 35^\circ \]

b) \[C + 53 = 180 \]
 \[C = 180 - 53 \]
 \[C = 127^\circ \]

\[d + 127 + 114 = 540 \]
\[+ 92 + 119 \]
\[d + 452 = 540 \]
\[d = 540 - 452 \]
\[d = 88^\circ \]

\[d + e = 180 \]
\[88 + e = 180 \]
\[e = 180 - 88 \]
\[e = 92^\circ \]