
Determine the perimeter and area of each shape.



Determine the perimeter and area of each shape, this time,

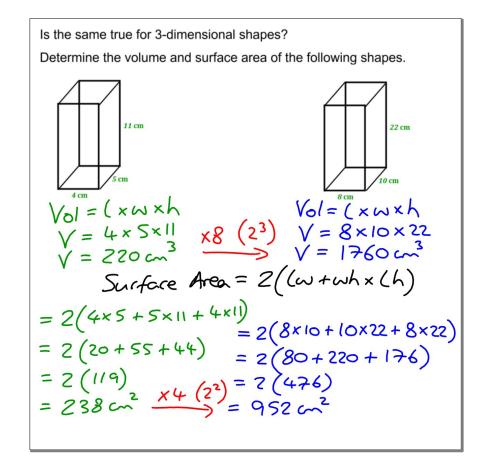


What effect does doubling a shapes dimensions have on its perimeter and area?

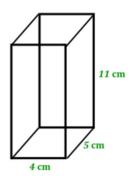
Perimeter = 22 cm
Area = 24 cm²

Perimeter = 44 cm
Area = 154 cm²

Scale factor is the charge in dimensions


Perimeter = 48 cm
Area = 24 cm²

Perimeter = 48 cm
Area = 96 cm²


Area = 96 cm²

Perimeter = 48 cm
Area = 96 cm²

Area = 56 cm²



Determine the volume and surface area of the following shapes.



22 cm

Surface Area =  $238 \text{ cm}^2$ 

Surface Area = 952 cm<sup>2</sup>

Volume =  $220 \text{ cm}^3$ 

Volume =  $1760 \text{ cm}^3$ 

Surface \_\_\_ Surface Scale factor squared orea > Volume x Scale factor cubed

MTH1W Grade 9 Mathematics

## **6.7 Effects of Changing Dimensions**

Goal(s) - Investigate how changing one or more dimensions of a 2D or 3D shape/ object affects the perimeter/circumference, area, surface area, and volume When changing all the dimensions of a figure to create a new figure...

The perimeter changes by the same amount as the scale factor of the dimensions.

Perimeter = 22 cm

Figure 1

Figure 2

Side lengths of Figure 2 are 2 times those of Figure 1.

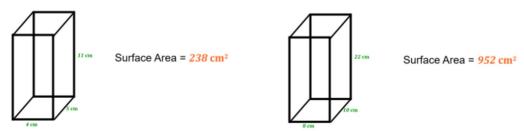
The perimeter of Figure 2 is 2 times that of Figure 1.

Scale factor is the Value that the dimensions have been multiplied by.

When changing **all** the dimensions of a figure to create a new figure...

The area changes by the square of the scale factor.

3 cm Area = 24 cm<sup>2</sup> 6 cm Area = 96 cm<sup>2</sup>

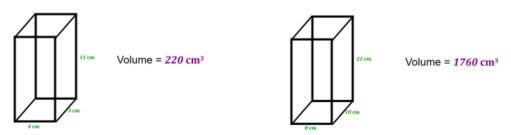

Figure 1 Figure 2

Side lengths of Figure 2 are 2 times those of Figure 1.

The area of Figure 2 is  $2^2 = 4$  times that of Figure 1.

When changing all the dimensions of a figure to create a new figure...

The surface area changes by the square of the scale factor.




Side lengths of Figure 2 are 2 times those of Figure 1.

The surface area of Figure 2 is  $2^2$ = 4 times that of Figure 1.

When changing **all** the dimensions of a figure to create a new figure...

The volume changes by the cube of the scale factor.



Side lengths of Figure 2 are 2 times those of Figure 1.

The volume of Figure 2 is  $2^3$ = 8 times that of Figure 1.

A rectangle has a width of  $5 \, m$  and a length of  $8 \, m$ . Determine the perimeter and area of a similar shape where the sides are three times as long.

$$P = 2(14)$$
 $P = 2(8+5)$ 
 $P = 2(13)$ 
 $P = 26$ 
 $A = 100$ 
 $A = 100$ 

6 cm

14 cm



How would the volume change if the height and radius were quadrupled?

How would the volume change if the height and radius were halved?

dimensions are 
$$\times \frac{1}{2}$$
 $\Rightarrow$  Volume  $\Rightarrow$  Vol  $\times (\frac{1}{2})^3$ 
 $=$  Vol  $\times \frac{1}{8}$  (or Vol  $\div 8$ )