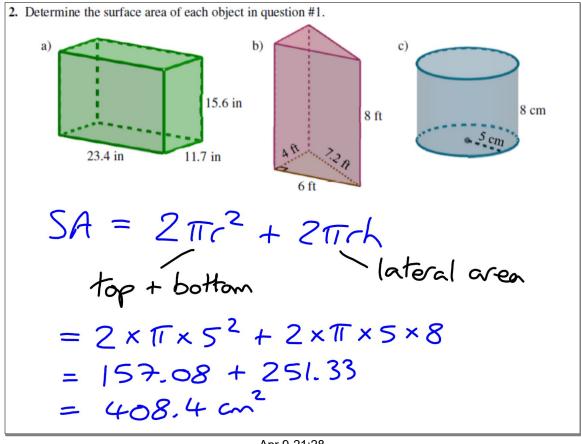
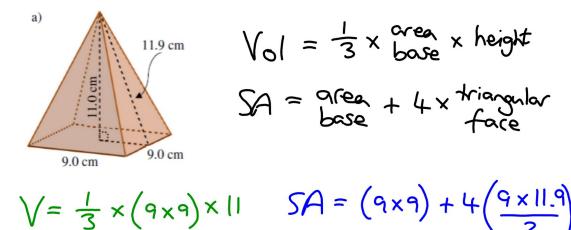
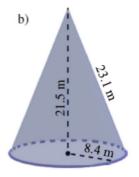

Solutions


Page 300 #s 1, 2, 4, 9, 10, 11, 14, 18

Apr 9-21:27



Apr 9-21:28


$$V = \frac{1}{3} \times (9 \times 9) \times 11$$

= 297.0 cm³

$$SA = (9 \times 9) \times 11$$
 $SA = (9 \times 9) + 4(\frac{9 \times 11.9}{2})$
= 297.0 cm³ = 81 + 214.2
= 295.2 cm²

Apr 9-21:28

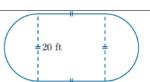
4. Determine the volume and surface area of each object.

$$V_{01} = \pi r^{2} \lambda$$

 $SA = \pi r^{2} \lambda + \pi rs$

$$V_0 = \pi \times 8.4^2 \times 21.5$$

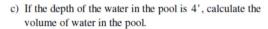
= 4765.9 m^3

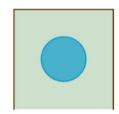

$$SA = \pi \times 8.4^{2} \times 21.5 + \pi \times 8.4 \times 23.1$$
$$= 4765.92 + 609.59$$
$$= 5375.5 \text{ m}^{2}$$

- 9. A triangle has a base of $2\frac{3}{8}$ inches and height of $3\frac{1}{4}$ inches.
 - a) Determine the exact area of the triangle.
 - b) If the triangle is the base of a prism with length $5\frac{1}{2}$ inches, determine the exact volume of the prism.

a) Area =
$$\frac{b \times h}{2}$$

= $2\frac{3}{8} \times 3\frac{1}{4} \div 2$
= $\frac{19}{8} \times \frac{13}{4} \div 2$
= $\frac{247}{32} \div \frac{2}{1}$ b) $Vol = \frac{area}{base} \times L$
= $\frac{247}{32} \times \frac{1}{2}$ = $3\frac{55}{64} \times 5\frac{1}{2}$
= $\frac{247}{64} \times \frac{1}{2}$ = $\frac{247}{64} \times \frac{11}{2}$
= $3\frac{55}{64}$ in $\frac{2}{128}$ in $\frac{2717}{128}$ in $\frac{2717}{128}$ in $\frac{3}{128}$


Apr 9-21:30


 A backyard ice rink consists of a rectangular middle section and semicircular ends, as shown in the diagram on the right.

- a) Determine the perimeter of the rink.
- b) Determine the area of the rink.
- c) If the ice has a thickness of 0.2 feet, determine the volume of ice used for the rink.

- 11. A circular pool with a radius of 9' is to be placed in the centre of a square backyard measuring $40' \times 40'$, as shown below. The remainder of the yard will be covered by grass.
 - a) Determine the area of the yard covered by grass.
 - b) Three sides of the yard will be fenced. If the homeowner can install fence at a cost of \$28 per linear foot, find the total cost of installing the fence.

a) Area = Area - Area

$$5(ass) = yard - Pool$$

= $(40 \times 40) - (\pi \times 9^2)$
= $1600 - 254.5$ C) $Vol = area \times depth$
= $1345.5 + E^2$ = $(\pi \times 9^2) \times \mu$

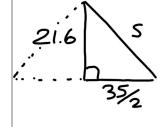
=
$$1600 - 254.5$$
 C) $Vol = area \times dep$
= $1345.5 ft^2$ = $(\pi \times 9^2) \times 4$
b) Length needed = 3×40 = 254.5×4
= $120 ft$ = $1018 ft^3$

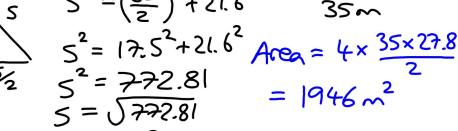
C)
$$Vol = \alpha rea \times depth$$

= $(\pi \times 9^2) \times 4$
= 2545×4

$$= 1018 ft^3$$

Apr 9-21:31


14. The entrance of the Louvre in Paris is a square-based pyramid with a height of 21.6 m. The side length of the square base is 35 m. Calculate the total surface area of the four triangular faces to the nearest square metre.



Area = 4 x base x height"

Height is NOT the actual height, but the SLANT HEIGHT

$$S^2 = \left(\frac{35}{2}\right)^2 + 21.6^2$$

$$5 = 27.8$$

- **18.** A concrete mixing silo consists of cylindrical rings and a conical spout. Each cylindrical ring has a height of 122.5 cm and a diameter of 322.5 cm.
- a) How much volume, to the nearest tenth of a cubic metre, does each cylindrical ring add to the silo?
- b) Determine, to the nearest tenth of a cubic metre, the volume of the conical spout if its height is 230 cm.

Measuring in m³ so convert chinersions into metres

Height = 1.225m, Diameter = 3.225m

$$|A| = |A| = |A|$$

Apr 9-21:34

- 18. A concrete mixing silo consists of cylindrical rings and a conical spout. Each cylindrical ring has a height of 122.5 cm and a diameter of 322.5 cm.
- c) Determine the volume of a silo with 6 rings.
- d) Write an equation to model the volume, V (in cubic metres), of a silo that has n rings.
- e) If a silo must hold a volume of 110 m³, how many rings are needed?

d)
$$Vol = 10.00 + 6.3$$

e)
$$110 = 10.0n + 6.3$$

 $110 - 6.3 = 10.0n + 6.3 - 6.3$
 $103.7 = 10.0n$ $\implies n = 10.37 \text{ rings}$
 $10.0 = 10.0$ $\implies \text{Need II rings}$