MTH1W Grade 9 Mathematics

6.3 Angle Relationships

Goal(s) - To determine the sum of the interior angles of various polygons

- To determine the value of unknown angles in various polygons
- To determine unknown angles involving parallel lines intersected by a transversal

The sum of the interior angles of any triangle add to 180°. The sum of the interior angles of any polygon can be found by determining how many triangles can be found in the shape.

2 triangles, therefore the sum of the interior angles of a quadrilateral is: $2 \times 180^{\circ} = 360^{\circ}$ Determine the sum of the interior angles of each of the shapes by drawing lines from one vertex to the other vertices, then complete the chart.

Dec 13-3:58 PM

Polygon	# of sides	# of diagonals	# of triangles	Sum of Interior Angles
triangle	3	0	1	180°
quadrilateral	4	1	2	360°
pentagon	5	2	3	540°
hexagon	6	3	4	750
heptagon	7	4	5	900°
octagon	8	5	6	1080°

What is the relationship between the number of sides a shape has and the number of triangles that can be created inside the shape?

For a polygon with n sides, the **sum** of the *interior angles*, in degrees can be found by multiplying 180° times the *number of sides* minus 2.

Sum of the interior angles of a polygon = $180^{\circ}(n-2)$

Dec 13-4:26 PM

Calculate the sum of the interior angles of a regular decagon. Determine the measure of one of those angles.

A **transversal** is a line that intersects two or more lines at different points.

When parallel lines are cut by a transversal, the following types of angles are CONGRUENT (equal):

Corresponding Angles

Alternate Interior Angles

Alternate Exterior Angles

When parallel lines are cut by a transversal, the following types of angles are SUPPLEMENTARY (add to 180°):

Co-Interior Angles

Co-Exterior Angles

Other important angle relationships:

Opposite Angles are CONGRUENT

Complementary Angles add to 90°

$$x / y$$

$$x + y = 180^{\circ}$$

Supplementary Angles add to 180°

Determine the measure of each unknown angle in the diagram. Give a reason to support your answer.

 $a = 110^{\circ}$ (opposite angles are equal) $b = 70^{\circ}$ (co-interior angles total 180°) $c = 110^{\circ}$ (supplementary angles total 180°) $d = 70^{\circ}$ (opposite angles are equal)