MTH1W Grade 9 Mathematics

5.6 Relations of the Form xy = k

Goal(s) - To match equations and inequalities of the form xy = k with their corresponding graphs

- Sketch the graph of a relation with an equation in the form xy = k

Jun 19-8:29 AM

List 5 ordered pairs that make this equation true:

$$x + y = 10$$

$$(5,5)$$
 because $5+5=10$
 $(1,9)$ because $1+9=10$
 $(4,6)$ because $4+6=10$
 $(7,3)$ because $7+3=10$
 $(2,8)$ because $2+8=10$

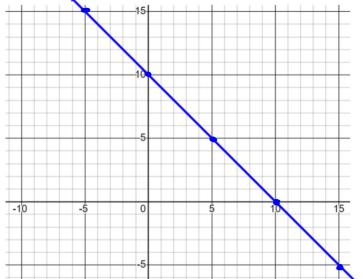
List 5 ordered pairs that make this equation true where one value is a negative number.

$$x+y=10$$

$$(-1,11) because (-1)+11=10$$

$$(-4,14) because (-4)+14=10$$

$$(-20,30) because (-20)+30=10$$


$$(-6,16) because (-6)+16=10$$

$$(-8,18) because (-8)+18=10$$

Plot the points you found that satisfy the equation x + y = 10.

If you were to connect these points, what type of relationship has been graphed?

Are these all the possible values that satisfy the equation or are there more?

We have a (Slape = -1, y-intercept = 10) linear relation (Slape = -1, y-intercept = 10) There are an INFINITE number of values that would work.

How does the relationship x + y = 10 change if we consider:

All the points above the line? x + y > 10All the points below the line? x + y < 10 x + y < 10

List a minimum of ${\it 5}$ ordered pairs that make this equation true.

$$xy=10$$

 $(5,2)$ because $5\times 2=10$
 $(-5,-2)$ because $(-5)\times (-2)=10$
 $(1,10)$ because $1\times 10=10$
 $(-1,-10)$ because $(-1)\times (-10)=10$
 $(2.5,4)$ because $(-2.5)\times (-4)=10$
 $(-2.5,-4)$ because $(-2.5)\times (-4)=10$

Plot the points you found that satisfy the equation xy = 10.

If you were to connect these points, what type of relationship has been graphed?

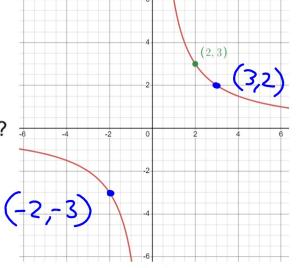
What two lines does the graph not appear to intersect?

The relationship is NON-LINEAR.

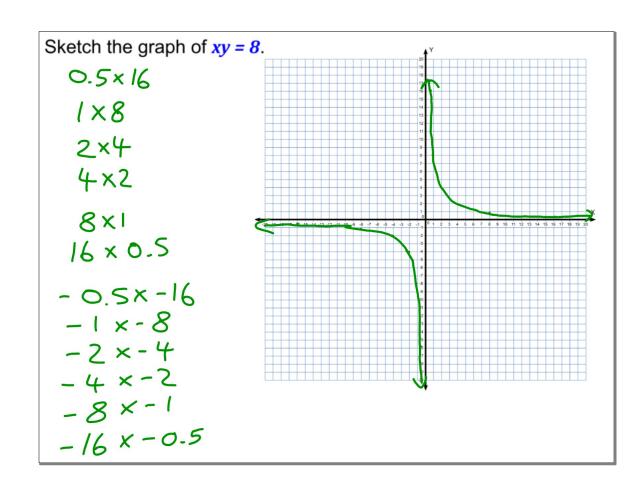
They will never cross the x-axis or y-axis

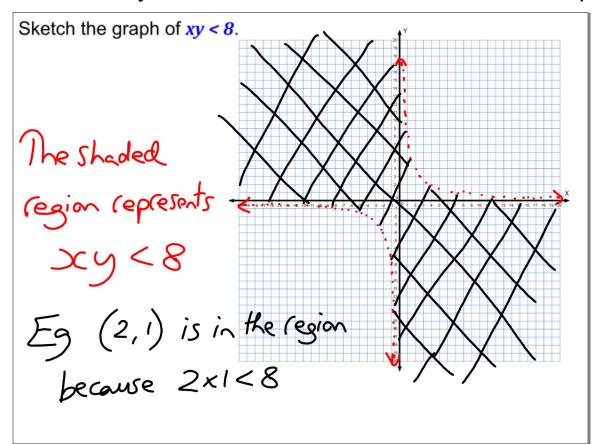
The graph of xy = k, where k > 0, does not have an x or yintercept.

As the values of x and y get infinitely large and small, the graph approaches the lines y = 0and x = 0 (these lines are called asymptotes!)



Consider the graph of xy = 6.


Why does the graph pass through the point (2, 3)?


Why does the graph only appear in quadrants 1 and 3?

State two other points that satisfy this relation, one in quadrant 1 the other in quadrant 3.

The products of x and y will be negative in quadrants I and 3. We need to have a positive product.

