MTH1W Grade 9 Mathematics
5.5 Solving Equations Involving Fractions and/or Distribution

Goal(s) - To solve equations involving fractions with the unknown in either the numerator or denominator.

- To solve problems that involve distribution on one or both sides of the equal sign.

Solve each equation by inspection.

$$
\frac{w}{4}=3 \quad \frac{k}{5}=-6 \quad \frac{24}{m}=8
$$

$$
\frac{\omega}{4} \times 4=3 \times 4
$$

$$
\omega=12
$$

$$
\begin{aligned}
& \frac{24}{m}=8 \\
& \frac{24}{m} \times m=8 \times m \\
& \frac{24}{8}=\frac{8 m}{8} \\
& 3=m
\end{aligned}
$$

$$
\begin{aligned}
& \frac{24}{8}=\frac{8 m}{8} \\
& 3=m
\end{aligned}
$$

$$
\begin{aligned}
& \frac{k}{5} \times 5=-6 \times 5 \\
& k=-30
\end{aligned}
$$

Solve each equation by inspection.

$$
\begin{aligned}
& \frac{w}{4}=\frac{3}{12} \quad \frac{k}{5}=\frac{-12}{10} \quad \frac{4}{5}=\frac{w}{20} \\
& \xrightarrow{x^{3}} \\
& \xrightarrow[\times 2]{7} \\
& \xrightarrow[\times 4]{7} \\
& \Rightarrow \frac{3 \omega}{3}=\frac{3}{3} \Rightarrow \frac{2 k}{2}=\frac{-12}{2} \\
& \Rightarrow 4(4)=\omega \\
& \omega=1 \quad k=-6 \\
& 16=\omega
\end{aligned}
$$

If a proportional relationship contains an unknown, the value can be determined by inspection or through the process of crossmultiplication.

$$
\frac{5}{60}=\frac{35}{d x}
$$

"If five times seven is thirty-five, then d is equal to sixty multiplied by seven...
$\therefore d=420$!"

$(5)(d)=(60)(35)$
$5 d=2100$
$\frac{5 d}{5}=\frac{2100}{5}$

$$
d=420
$$

$$
\begin{aligned}
& \text { Determine the value of each unknown. } \\
& \xrightarrow[x 2]{\leftarrow} \quad \overleftarrow{x-3} \\
& \frac{7}{9}=\frac{14}{w} \\
& \frac{-3}{12}=\frac{1}{g} \\
& \frac{3.7}{m}=\frac{32.93}{89} \\
& \Rightarrow 9 \times 2=w \Rightarrow 12=9 \times(-3) \\
& 3.7 \times 89 \\
& 18=w \\
& \frac{12}{-3}=\frac{-3 g}{-3} \\
& =m \times 32.93 \\
& -4=9 \\
& \frac{329.3}{32.93}=\frac{32.93 \mathrm{~m}}{32.93} \\
& 7 \times \omega=9 \times 14 \\
& \frac{7 \omega}{7}=\frac{126}{7} \\
& -3 \times g=12 \times 1 \\
& \frac{-3 g}{-3}=\frac{12}{-3} \\
& -39=-4 \\
& \omega=18
\end{aligned}
$$

Solve each equation.

$$
2(3 x-4)=4
$$

Distribute the bracket

$$
\begin{gathered}
\Rightarrow 2(3 x)+2(-4)=4 \\
6 x-8=4
\end{gathered}
$$

Using SAMDEB...

$$
\begin{aligned}
& 6 x-8+8=4+8 \\
& \frac{6 x}{6}=\frac{12}{6} \\
& x=2
\end{aligned}
$$

Solve each equation.

$$
-2(x+1)=10
$$

Distribute the bracket

$$
\begin{array}{cl}
\Rightarrow & -2(x)-2(1)=10 \\
& -2 x-2=10
\end{array}
$$

Using SAMDEB...

$$
\begin{aligned}
& -2 x-2+2=10+2 \\
& \frac{-2 x}{-2}=\frac{12}{-2} \\
& x=-6
\end{aligned}
$$

Solve each equation.

$$
3(x-4)=2(x+5)
$$

Distribute both brackets

$$
\begin{aligned}
\Rightarrow 3(x)+3(-4) & =2(x)+2(5) \\
3 x-12 & =2 x+10 \\
3 x-2 x & =10+12 \quad \text { Check } \\
x=22 \quad 3(22-4) & =2(22+5) \\
3(18) & =2(27) \\
54 & =54 \\
C 5 & =R 5
\end{aligned}
$$

Two girls are the same age. One girl's age can be found by increasing a number by 10 and then doubling the result. The other girls age can be found by reducing a number by 5 and then multiplying the result by 5 . Find the number, find their ages! Let $n=$ the number
Girl \#1 $\Rightarrow 2(n+10)$
Girl \#2 $\Rightarrow 5(n-s)$
Girls are the same age

$$
\begin{aligned}
& \Rightarrow 2(n+10)=5(n-5) \\
& 2(n)+2(10)=5(n)+5(-5) \\
& 2 n+20=5 n-25 \\
& 20+25=5 n-2 n \\
& \frac{45}{3}=\frac{3 n}{3} \quad \text { Ages }=2(15+10) \\
& 15=n \\
& =2(25) \\
& =50 \text { years old }
\end{aligned}
$$

