5.2 Powers of Powers, Products and Quotients.notebook

A rectangle has side lengths, $2 x+8$ and 3 cm . Determine a simplified expression for the area of the rectangle. If the area of the rectangle is $72 \mathrm{~cm}^{2}$, solve for x. Use this value and determine the actual dimensions of the rectangle. What is the perimeter of the rectangle?

$$
\begin{aligned}
\text { Area }_{2} & =\text { length } \times \text { width } \\
& =(2 x+8) \times 3 \\
& =6 x+24
\end{aligned}
$$

$$
6 x+24=72
$$

$$
6 x+24-24=72-24
$$

$$
\text { length }=2 x+8
$$

$$
=2(8)+8
$$

$$
\frac{6 x}{6}=\frac{48}{6}
$$

$$
=24 \mathrm{~cm}
$$

$$
\text { width }=3 \mathrm{~cm}
$$

$x=8$

$$
\text { Perimeter }=2 c+2 \omega
$$

$$
=2(24)+2(3)
$$

$$
=48+6
$$

$$
=54 \mathrm{~cm}
$$

MTH1W Grade 9 Mathematics

5.2 Powers of Powers, Products and Quotients

Goal(s) - To identify the resulting exponent when a power is raised to a power
- To identify equivalent expressions involving powers
- Simplify expressions involving powers

Recall that a power is a product of identical factors and consists of two parts: a base and an exponent.

Power

The base is the identical factor, and the exponent tells how many factors there are.

Investigating the Power Rules
Complete each table below. Is there a relationship between the exponents in the first column and the exponent in the last column?

Power of a Power	Expanded Form	Single Power
$\left(2^{2}\right)^{3}$	$\left(2^{2}\right) \times\left(2^{2}\right) \times\left(2^{2}\right)$ $=(2 \times 2) \times(2 \times 2) \times(2 \times 2)$	2^{6}
$\left(10^{4}\right)^{2}$	$(10 \times 10 \times 10 \times 10) \times(10 \times 10 \times 10 \times 10)$	10^{8}
$\left(n^{3}\right)^{2}$	$(n \times n \times n) \times(n \times n \times n)$	n^{6}

Relationship?
When raising a power to a power we MULTIPLY the exponents. The base stays the same.

$$
\Rightarrow\left(x^{m}\right)^{n}=x^{m \times n}
$$

Power of a Power Rule
A power of a power can be written as a single power by multiplying the exponents.

$$
\left(x^{a}\right)^{b}=x^{a \times b}
$$

Careful when the base has a
coefficient. The coefficient needs to

$$
\text { Eg. } \begin{aligned}
& \left(2 x^{2}\right)^{3} \text { be raised to the } \\
= & 2^{1 \times 3} x^{2 \times 3} \\
= & 2^{3} x^{6} \Rightarrow 8 x^{6}
\end{aligned}
$$

Write each product as a single power. Then evaluate the power.

$$
\begin{aligned}
& \left(4^{2}\right)^{3}=4^{2 \times 3}=4^{6} \\
& {\left[(-5)^{7}\right]^{2}=} \\
& \begin{aligned}
\left(12^{2}\right)^{4} \div 12^{5} & =12^{2 \times 4} \div 12^{5} \\
& =12^{8} \div 12^{5} \\
& =12^{8-5} \Rightarrow 12^{3} \\
& \begin{aligned}
& {\left[(-9)^{7}\right]^{-3} } \\
&(-9)^{-22}= \\
&=(-9)^{7 \times-3} \div(-9)^{-22} \\
&=(-9)^{-21-(-22)} \Rightarrow(-9)^{-22}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Rewrite with a single power.

$$
\begin{aligned}
\left(-6 m^{3} n^{4}\right)^{2} & =(-6)^{1 \times 2} m^{3 \times 2} n^{4 \times 2} \\
& =(-6)^{2} m^{6} n^{8} \\
& =36 m^{6} n^{8}
\end{aligned}
$$

