5.1 Multiplying and Dividing Powers with the Same Base

Goal(s) - To identify the resulting exponent when two powers are multiplied/divided

- Simplify expressions involving multiplication/division of powers

Recall that a power is a product of identical factors and consists of two parts: a base and an exponent.

The base is the identical factor, and the exponent tells how many factors there are.

exponential form

$$
\Rightarrow 2^{4}=16
$$

For each power: identify the base, identify the exponent, and then evaluate.

$$
4^{3}=\underline{64}
$$

\qquad

$$
\left(\frac{3}{4}\right)^{4}=\frac{81}{256}
$$

Base

$\frac{3}{4}$

Exponent

$$
3
$$

2
-3

Investigating the Power Rules
Complete each table below. Is there a relationship between the exponents in the first column and the exponent in the last column?

	Expanded Form	Single Power
$3^{2} \times 3^{4}$	$(3 \times 3) \times(3 \times 3 \times 3 \times 3)$	3^{6}
$6^{4} \times 6^{1}$	$(6 \times 6 \times 6 \times 6) \times(6)$	6^{5}
$n^{3} \times n^{6}$	$(n \times n \times n) \times(n \times n \times n \times n \times n \times n)$	n^{9}

Relationship?
The simplified power is a result of ADDING the exponents together. This will always work as long as the bases are the same as each other.

$$
\Longrightarrow x^{m} \times x^{n}=x^{m+n}
$$

Investigating the Power Rules
Complete each table below. Is there a relationship between the exponents in the first column and the exponent in the last column?

	Expanded Form	Single Power
$5^{7} \div 5^{2}$	$\frac{5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5}{5 \times 5}$	5^{5}
$7^{4} \div 7^{1}$	$\frac{7 \times 7 \times 7 \times 7}{7}$	7^{3}
$n^{8} \div n^{6}$	$\frac{n \times n \times n \times n \times n \times n \times n \times n}{n \times n \times n \times n \times n \times n}$	n^{2}

Relationship?
The simplified power is a result of SUBTRACTING the exponents. This will always work as long as the bases are the same. $\Rightarrow x^{m} \div x^{n}=x^{m-n}$

Product Rule
When multiplying powers with the same base, add the exponents to write the product as a single power.

$$
x^{a} \times x^{b}=x^{a+b}
$$

Quotient Rule
When dividing powers with the same base, subtract the exponents to write the quotient as a single power.

$$
x^{a} \div x^{b}=x^{a-b}
$$

Write each product as a single power. Then evaluate the power.

$$
\begin{aligned}
& 4^{2} \times 4^{3}=4^{2+3}=4^{5} \Rightarrow 1024 \\
& (-5)^{7} \div(-5)^{2}=(-5)^{7-2}=(-5)^{5} \Rightarrow-3125 \\
& 12^{2} \times 12^{4} \div 12^{5}=12^{2+4-5}=12^{1} \Rightarrow 12 \\
& \frac{(-9)^{7} \div(-9)^{-3}}{(-9)^{11}}=(-9)^{7-(-3)-11}=(-9)^{-1} \Rightarrow-\frac{1}{9} \\
& \text { 介 } \\
& \text { reciprocal of base } \\
& \text { exponent becomes } \\
& \text { positive }
\end{aligned}
$$

Rewrite with a single power.

$$
k^{4} \times k^{9}=k^{4+(-9)}=k^{-5}
$$

$$
\begin{aligned}
-2 a^{2} \times 5 a^{3}= & (-2 \times 5)\left(a^{2+3}\right) \\
\Gamma= & -10 a^{5} \\
& \text { coefficients follow the } \\
& \text { regular rules of math }
\end{aligned}
$$

