Review

1. Topics

- Recursive Sequences
- Arithmetic Sequences
- Geometric Sequences
- Arithmetic Series
- Geometric Series
- Pascal's Triangle
- Binomial Theorem
- Simple Interest
- Compound Interest
- Future Value Annuities
- Present Value Annuities

2. Review Questions

Nelson Page 468 #s 3 (i), 4, 8(ii), 10, 11, 14ad, 15ab, 18ac & 23cd **AND** Nelson Page 534 #s 2,

4, 9, 11, 13 & 15

Mar 19-7:45 AM

Solutions

- 3. For each arithmetic sequence, state
 - i) the general term

- a) 58, 73, 88, ...
- **b**) $-49, -40, -31, \dots$

a)
$$\alpha = 58$$
, $d = 5$

$$\Rightarrow t_{n} = 58 + 5(n-1)$$

$$= 58 + 5n - 5 \quad (2) \quad \alpha = 81, d = -6$$

$$= 5n + 53 \quad \Rightarrow t_{n} = 81 - 6(n-1)$$
b) $\alpha = -49, d = 9$

$$= 1 - 6n + 6$$

$$= -49 + 9n - 9$$

$$= 9n - 58$$

May 25-14:14

- 8. For each geometric sequence, determine
 - ii) the general term

a)
$$a = 7$$
, $c = -3$
 $t_n = 7(-3)^{n-1}$
b) $a = 12$, $c = \frac{1}{2}$
 $t_n = 12(\frac{1}{2})^{n-1}$

- a) the first term is 7 and the common ratio is -3
- **b**) a = 12 and $r = \frac{1}{2}$
- c) the second term is 36 and the third term is 144

c)
$$r = \frac{144}{36} = 4$$

$$\frac{36}{36} = 4 \Rightarrow \alpha = \frac{36}{4}$$

$$\alpha = 9$$

$$t_n = 9(4)^{n-1}$$

May 25-14:16

- **10.** In a laboratory experiment, the count of a certain bacteria doubles every hour.
 - a) At 1 p.m., there were 23 000 bacteria present. How many bacteria will be present at midnight?
 - b) Can this model be used to determine the bacterial population at any time? Explain.

a)
$$a = 23,000$$
, $r = 2$
 $n = 12$ [one pm \rightarrow midnight]

 $t_{11} = 23000(2)^{12-1}$
 $= 23000(2048)$
 $= 47,104,000$

b) You may think yes, but in reality the bacteria would run out of food and space.

11. Guy purchased a rare stamp for \$820 in 2001. If the value of the stamp increases by 10% per year, how much will the stamp be worth in 2010?

$$a = 820, c = 1.10, n = 10 [2001 \rightarrow 2010]$$

$$t_{10} = 820(1.10)^{10-1}$$

$$= 820(1.10)^{9}$$

$$= $1933.52$$

May 25-14:18

14. For each arithmetic series, calculate the sum of the first 50 terms.

a)
$$1 + 9 + 17 + \dots$$

$$a = 1, d = 8$$

$$S = \frac{50}{2} \left(2(1) + 8(50 - 1) \right)$$

$$= 25(2+392)$$
$$= 25(394)$$

$$= 25(394)$$

d)
$$-9 - 14 - 19 - \dots$$

$$a = -9, d = -5$$

$$S_{50} = \frac{50}{2} \left(2(1) + 8(50 - 1) \right) S_{50} = \frac{50}{2} \left(2(-9) - 5(50 - 1) \right)$$

$$= -6575$$

15. Determine the sum of the first 25 terms of an arithmetic series in which

a) the first term is 24 and the common difference

$$a = 24$$
, $d = 11$

$$S_{25} = \frac{25}{2} \left(2(24) + 11(25 - 1) \right)$$
 $S_{25} = \frac{25}{2} \left(91 + 374 \right)$

$$=12.5(48+264)$$

$$= 12.5(312)$$

b) $t_1 = 91$ and $t_{25} = 374$

$$S_{25} = \frac{25}{2} \left(91 + 374 \right)$$

18. For each geometric series, calculate t_6 and S_6 . c) 6-12+24-... a=6, r=-12 6=-2a) 11 + 33 + 99 + ... $\alpha = 11 \quad c = \frac{33}{11} = 3$ $t_6 = 6(-2)^{6-}$ $=6(-2)^{3}$ = 2673

23. Expand and simplify.

c)
$$(2c+5)^3$$

$$= 1(2c)^3(5)^6 + 3(2c)^2(5)^1 + 3(2c)^2(5)^2 + 1(2c)^6(5)^3$$

$$= 8c^3 + 60c^2 + 150c + 250$$

$$= 1(4)^6(-3d)^6 \left[1, 6, 15, 20, 15, 6, 1\right]$$

$$= 1(4)^6(-3d)^6 + 6(4)^5(-3d)^4 + 15(4)^6(-3d)^2$$

$$+ 20(4)^3(-3d)^3 + 15(4)^2(-3d)^4 + 6(4)^6(-3d)^5$$

$$+ 1(4)^6(-3d)^4 + 16(4)^6(-3d)^6$$

$$+ 1(4)^6(-3d)^6$$

$$+ 19440d^4 - 5832d^5 + 729d^6$$

May 25-14:20

Solutions

2. Pia invests \$2500 in an account that earns simple interest. At the end of each month, she earns \$11.25 in interest.

a) What annual rate of simple interest is Pia earning? Round your answer to two decimal places.

b) How much money will be in her account after 7 years?

c) How long will it take for her money to double?

A) T = Prt T = Prt

May 25-14:21

4. Isabelle invests \$4350 at 7.6%/a compounded quarterly. How long will it take for her investment to grow to \$10 000? A = P(1+i) 10000 = 4350(1+0.019) 4350 2.29885 = 1.019 2.29885 = 1.019 4350 2.29885 = 1.019 4350 2.29885 = 1.019 4350 2.29885 = 1.019 4350 2.29885 = 1.019 4350 2.29885 = 1.019 44.2 = 44.2

9. Roberto financed a purchase at 9.6%/a compounded monthly for 2.5 years. At the end of the financing period, he still owed \$847.53. How much money did Roberto borrow?

$$P = A(1+i)^{-1}$$

$$P = 847.53(1+0.008)^{-30}$$

$$P = $667.33$$

Monthly = 12

$$i = \frac{0.096}{12} = 0.008$$

 $n = 2.5(12) = 30$
 $A = 847.53$
 $P = ?$

May 25-14:22

May 25-14:23

13. Ernie wants to invest some money each month at 9%/a compounded monthly for 6 years. At the end of that time, he would like to have \$25 000. How much money does he have to put away each month?

money does he have to put away each month?

$$FV = R\left((1+i)^{n}-1\right)$$

$$FV = R\left((1+i)^{n}-1\right)$$

$$R = \frac{25000(0.0075)}{(1.0075)^{72}-1}$$

$$R = \frac{187.50}{0.71255...}$$

R = \$263.14

Monthly = 12

$$FV = 25000$$

 $i = \frac{0.09}{12} = 0.0075$
 $n = 6(12) = 72$

May 25-14:23

15. Paul borrows \$136 000. He agrees to make monthly payments for the next 20 years. The interest rate being charged is 6.6%/a compounded monthly.

a) How much will Paul have to pay each month?

b) How much interest is he being charged over the term of the loan?

$$PV = R(1 - (1 + i)^{5})$$

$$R = \frac{PV(i)}{(1 - (1 + i)^{5})}$$

$$R = \frac{136\infty0(0.0055)}{(1 - (1.0055)^{-240})}$$

$$R = \frac{136000}{(1 - (1.0055)^{-240})}$$

$$R = \frac{748}{0.7318967886}$$

$$R = \frac{1}{10022.00}$$

The interest rate being charged over the term of the loan?

$$I = R(n) - PV$$

$$I = R($$