Solutions

Nov 20-18:35

3. Michel invests \$850 at 7%/a simple interest. How long will he have to leave his investment in the bank before earning \$200 in interest?

$$T = Prt$$
 $2\infty = 850(0.07)t$
 $2\infty = 59.5t$
 59.5
 59.5
 $3.36 = t$ $\implies 3.36 years$

4. Sally has a balance of \$2845 on her credit card. What rate of simple interest is she being charged if she must pay \$26.19 interest for the 12 days her payment is late?

$$T = Prt$$

$$26.19 = 2845(r)(\frac{12}{365})$$

$$26.19 = 93.534r$$

$$93.534$$

$$93.534$$

$$0.28 = r \implies rate = 28\%$$

May 25-12:48

6. Mario borrows \$4800 for 8.5 years at a fixed rate of simple interest. At the end of that time, he owes \$8000. What interest rate is he being charged?

$$I = A - P$$

$$I = 8000 - 4800$$

$$I = 3200$$

$$I = Prt$$

$$3200 = 4800(r)(8.5)$$

$$\frac{3200}{40800} = \frac{40800r}{40800}$$

$$0.078 = r \implies rate = 7.8 \%$$

7. How much money must be invested at 6.3%/a simple interest to earn \$250 in interest each month?

$$T = Prt$$

$$250 = P(0.063)(\frac{1}{12})$$

$$250 = 0.0525P$$

$$0.0525$$

$$0.0525$$

$$47619.05 = P \implies $47619.05$$

May 25-12:49

Solutions

Nov 20-18:35

Copy and complete the table.							
	Rate of Compound Interest per Year	Compounding Period	Time	Interest Rate per Compounding Period, <i>i</i>	Compounding Periods, <i>n</i>		
a)	5.4%	semi-annually		0.054 = 0.03			
b)	3.6%	monthly	3 years	0.0036 12	3x12 = 36		
c)	2.9%	quarterly	7 years	0.009	57 x 4 = 28		
d)	2.6%	weekly	10 months	0.026 = 0.000	10 x 52 = 43 1/3		
$i = \frac{(\text{rate} \div 100)}{(\text{compounding period} \#)}$ Annually = 1 $\text{Seni-annually} = 2$ $\text{Quarterly} = 4$ $\text{Monthly} = 12$ $\text{in years} \text{ period} \#$ $\text{Bi-weekly} = 26$ $\text{Weekly} = 52$ $\text{Daily} = 365$							

ı	4.	For each investment,	determine the futu	re value and the t	otal interest earned
-	—	I of cacif investment,	determine the rutu	ic value and the t	otal iliterest carr

	Principal	Rate of Compound Interest per Year	Compounding Period	Time	A	Int
a)	\$4 000	3%	annually	4 years	4502.04	- 502.0K
b)	\$7 500	6%	monthly	6 years	10740.33	3240.33
c)	\$15 000	2.4%	quarterly	5 years	16906.39	1906.39
d)	\$28 200	5.5%	semi-annually	10 years	48516.08	20316.08
e)	\$850	3.65%	daily	1 year	881.60	31.60
f)	\$2 225	5.2%	weekly	47 weeks	2332.02	107.02

Using the formula
$$A = P(1+i)^{n}$$
Where $i = \frac{(\text{rate} = 100)}{\text{"#"}}$ and $n = \frac{\text{time in } \times \text{"#"}}{\text{years}}$

May 25-12:44

10. Eric bought a \$1000 Canada Savings Bond that earns 5%/a compounded annually. Eric can redeem the bond in 7 years. Determine the future value of the bond

the bond.

$$A = P(1+i)^{n}$$
 $P = 1000$
 $i = \frac{0.05}{1} = 0.05$
 $A = 1000(1.05)^{7}$
 $A = 7 \times 1 = 7$
 $A = 1407.10

11. Dieter deposits \$9000 into an account that pays 10%/a compounded quarterly. After three years, the interest rate changes to 9%/a compounded semi-annually. Calculate the value of his investment two years after this change.

$$A = P(1+i)^{\lambda}$$

$$A = 9000(1.025)^{12}$$

$$A = P(1+i)^{n}$$

$$A = $14434.25$$

$$P = 9000$$

$$\bar{\zeta} = \frac{0.10}{4} = 0.025$$

$$0 = 3x4 = 12$$

$$A = P(1+i)^{n}$$

$$P = 12104.00$$

$$C = \frac{0.09}{2} = 0.045$$

$$A = 12104(1.045)^{4}$$

$$C = 2x^{2} = 4$$

$$C = 2x^{2} = 4$$

May 25-12:44

Solutions

1. Calculate the present value of each investment.		Rate of Compound			
Using $A = P(1+i)^n$		Interest per Year	Compounding Period	Time	Future Value
	a)	4%	annually	10 years	\$10 000
· / · · · · · · · ·	b)	6.2%	semi-annually	5 years	\$100 000
$\Rightarrow P = A(1+i)^{-n}$	c)	5.2%	quarterly	15 years	\$23 000
	d)	6.6%	monthly	100 years	\$2 500
a) $P = 10000 \left(1 + \frac{0.04}{1}\right)^{-1}$	_	IOXI			
p = 10000 (1.04)-10					
P = \$6755.64		-5x	<u>)</u>		
$\rho = \$6755.64$ $b) \rho = 10000(1 + \frac{0.06}{2})$	10)			
p = 100000 (1.031)					
P=\$73690.81	ر ا د	- 15×4	-		
c) $P = 23000 \left(1 + \frac{0.05}{4}\right)$	<u>ک</u>)			
$P = 23000(1.013)^{-60}$					
P = \$10596.47	- 1	100 X 12			
$d) P = 2500 \left(1 + \frac{0.066}{12}\right)$) 00	5			
$\rho = 25\infty(1.0055)^{-12}$					
P = \$3.46					

May 25-12:41

2. Kevin and Lui both want to have \$10 000 in 20 years. Kevin can invest at 5%/a compounded annually and Lui can invest at 4.8%/a compounded monthly. Who has to invest more money to reach his goal? P = A(1+i) E = A(1+i) $P = 10000(1+\frac{0.05}{12})$ P = 10000(1-05) P = 10000(1.05) P = 10000(1.004) P = 10000(1.004) P = 10000(1.004) P = 10000(1.004) P = 10000(1.004)

5. Nazir saved \$900 to buy a plasma TV. He borrowed the rest at an interest rate of 18%/a compounded monthly. Two years later, he paid \$1429.50 for the principal and the interest. How much did the TV originally cost?

$$P = A(1+i)^{-1}$$

$$P = 1429.50(1+\frac{0.18}{12})^{-2\times12}$$

$$P = 1429.50(1.015)^{-24}$$

$$P = $1000 = Anount borrowed$$

$$\implies (ost of TV = 900 + 1000) saved$$

$$= $1900$$
borrowed

May 25-12:41