Financial Applications - Interest

Nelson Page 481 #s 3, 4, 6, 7 & 11, Page 490 #s 1, 4, 10 & 11, Page 498 #s 1, 2 & 5

Nov 4-10:28 AM

Warm Up

Expand and simplify the following binomial: (3x - 2y)4

$$= 1(3x)^{4}(-2y)^{3} + 4(3x)^{3}(-2y)^{1}$$

$$+ 6(3x)^{2}(-2y)^{2} + 4(3x)(-2y)^{3}$$

$$+ 1(3x)^{3}(-2y)^{4}$$

$$=81x^4-216x^3y+216x^2y^2-96xy^3+16y^4$$

Simple Interest

- Interest earned or paid only on the original sum of money invested or borrowed
- The initial amount of money borrowed or invested is called the principal
- Interest is calculated by:

I = Prt

where,

I = interest paid/owed

P = prinicpal

r = interest rate (convert to a decimal)

t = # of years

Also, the final amount, A, can be calculated using:

$$A = P + I$$

May 24-19:44

Compound Interest

- Interest calculated at regular periods and added to the principal for the next period
- Calculated by:

$$A = P(1 + i)^n$$

where,

A is the total value of the loan or investment

P is the principal

i is the interest rate per compounding period

[= r/(# of compounding periods per year)]

n is the # of compounding periods

[= # of years x # of compounding periods per year]

NOTE: r is the interest rate (as a decimal) per year

If solving for the present value we can use a different form which is:

 $P = A(1 + i)^{-n}$

Example

Determine the amount and interest earned for \$4000 invested for 4 years at 3% per annum (/a),

compounded semi-annually.

compounded semi-annually. Semi-annual=2
$$A = P(1+i)^{n} \qquad P = 4000$$

$$A = 4000(1+0.015)^{8} \qquad i = 0.03 = 0.015$$

$$A = 4000(1.015)^{8} \qquad n = 4(2) = 8$$

$$A = 4505.97$$

$$T = A - P = 5505.97$$

May 24-19:48

Example

Determine the amount and interest earned for \$500 invested for 3 years at 5% /a compounded monthly.

$$A = P(1+i)^{n}$$

$$A = Som (1+\frac{0.05}{12})^{36}$$

$$A = Som (1+\frac{0.05}{12})^{36}$$

$$A = \frac{0.05}{12}$$

$$A = \frac{5}{12}$$

Example

Determine the present value and interest earned on an investment that will be worth \$4000 in 2 years, when the interest rate is 3.5% /a compounded quarterly.

quarterly. Quarterly = 4

$$P = A(1+i)^{-1}$$
 $P = A(1+i)^{-1}$
 $A = 4000$
 $A = 4000$

May 24-19:48

Example

Determine the present value and interest payable on a loan that will be worth \$10000 in 4 years when the interest rate is 4% /a compounded monthly.

$$P = A(1+i)^{-1} \qquad \text{Monthly} = 12$$

$$P = 10000(1+\frac{0.04}{12})^{-48} \qquad A = 10000$$

$$i = \frac{0.04}{12}$$

$$P = $8523.71 \qquad n = 4(12) = 48$$

$$I = A - P = $1476.29$$

Mar 19-7:45 AM