Solutions

Nov 20-18:35

1. Determine which sequences are geometric. For those that are, state the

b) 5, 15, 45, 135, ...

$$x_3 \times 3 \times 3$$

=) geometric

geometric

geometric

 $(ahio)$

d) 6000, 3000, 1500, 750, 375, ...

 $(ahio)$
 $(ahio)$

3. The 31st term of a geometric sequence is 123 and the 32nd term is 1107. What is the 33rd term?

....
$$123$$
, 1107 , $\frac{?}{?}$,
$$\frac{1107}{123} = 9$$
 (common ratio)

$$=3 \pm 33 = \pm 32(r)$$

= 1107(9)
= 9963

May 24-13:55

- 6. For each geometric sequence, determine
- i) the general term ii) the recursive formula

a) 4, 20, 100, ...

$$\alpha = 4 r = 5$$

$$t_n = \alpha c^{n-1}$$

$$E_n = 4(5)^{n-1}$$

$$t_n = 5(t_{n-1})$$

where
$$t_1 = 4$$

$$t_6 = 4(3)$$

$$\alpha = 896$$
 $r = 0.5$

$$A = 896 (0.5)$$

$$L_{n} = 896(0.5)^{n-1}$$

$$L_n = 896(0.5)$$

a)
$$4, 20, 100, ...$$
 $a = 4 r = 5$
 $t_n = 4(5)^{n-1}$
 $t_n = 5(t_{n-1})$
 $t_n = 5(t_{n-1})$
 $t_n = 5(t_{n-1})$
 $t_n = 6-1$
 $t_n = 4(5)$
 $t_n = 896(0.5)$
 $t_n = 896(0.5)$

$$t_1 = 896(0.5)^{6-}$$

$$t_6 = 28$$

6. For each geometric sequence, determine

i) the general term
ii) the recursive formula
iii) t_6 b) -11, -22, -44, ... a = -11 c = 2 c = 3 c = 4 c = -11 c = 2 c = 4 c = -11 c = 2 c = 4 c = -11 c = 2 c = 3 c = 4 c = -11 c = 2 c = 3 c = 4 c = -11 c = 2 c = 3 c = 3 c = 4 c = -11 c = 2 c = 3 c

May 24-13:55

6. For each geometric sequence, determine

i) the general term
ii) the recursive formula
iii) t_6 c) 15, -60, 240, ... 0 = 15 0 = -4 0 = 15 0 = -4 0 = 15 0 = -4 0 = 15 0 = -4 0 = 15 0 =

May 24-13:55

May 24-13:55

11. The 5th term of a geometric sequence is 45 and the 8th term is 360. Determine the 20th term.

$$\begin{aligned}
\xi_{S} &= 4S & \xi_{S} &= 360 \\
\xi_{N} &= \alpha \zeta & \xi_{N} &= \alpha \zeta \\
\xi_{S} &= \alpha \zeta & \xi_{N} &= \alpha \zeta \\
\xi_{S} &= \alpha \zeta & \xi_{N} &= \alpha \zeta \\
\xi_{S} &= \alpha \zeta & \xi_{N} &= \alpha \zeta \\
\xi_{S} &= \alpha \zeta & \xi_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \alpha \zeta & \xi_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \alpha \zeta & \xi_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} \\
\xi_{S} &= \zeta_{N} &= \zeta_{N}$$

May 24-13:55

- 16. The Sierpinski gasket is a fractal created from an equilateral triangle. At each stage, the "middle" is cut out of each remaining equilateral triangle. The first three stages are shown.
- a) If the process continues indefinitely, the stages get closer to the Sierpinski gasket. How many shaded triangles would be present in the sixth stage?
- b) If the triangle in the first stage has an area of 80 cm², what is the area of the shaded portion of the 20th stage?

stage 1

stage 2

stage 3

a) # of shaded
$$\Delta s = 1, 3, 9,$$
Look like the power of $3^{n-1} = 3^{6-1} = 243$
b) Aea of stages = $80, 80(\frac{3}{4}), 80(\frac{3}{4})(\frac{3}{4}), ...$

$$=) 80(\frac{3}{4})^{n-1}$$

$$= 200 - 1 = 0.338 \text{ cm}^{2}$$