### 6.60 Exponential Growth and Decay and Solving

## Warm up

Explain the transformations to the function $y=b^{x}$
a) $f(x)=3 b^{x+1}$
b) $g(x)=0.5 b^{2 x}-1$

## Example

A 200 g sample of radioactive polonium- 210 has a half-life of 138 days. This means that every 138 days, the amount of polonium left in a sample is half of the original amount. The mass of polonium, in grams, that remains after $t$ days can be modelled by

$$
m(t)=200\left(\frac{1}{2}\right)^{\frac{t}{138}}
$$

a) Determine the mass that remains after 5 years
b) How long does it take for the sample of 200 g to decay to 12.5 grams?

We saw before with polynomial expressions that we can prove expressions are NOT equal by giving a counter-example, but we need to show the equations are the same to prove that they are equivalent.

We have the same ideas for exponential functions
i.e. Show $2^{2 x}=4^{x}$

| $x$ | $y=2^{2 x}$ | $y=4^{x}$ |
| :--- | :--- | :--- |
| 0 |  |  |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |

## Equivalent Bases

First we need to show that they have the same base
$2^{2 x}$ $4^{x}$

We know that $4=$ $\qquad$ therefore we could have a base of $\qquad$
We then substitute so they are expressed as the same base.
Using the power of a power law we can simplify
and we can see that we have equivalent expressions because the equations are the same

## Examples

Show that the following are equivalent:
a) $\quad 3^{6 x}=9^{3 x}$
b) $\quad 8^{4 x}=16^{3 x}$
c) $\quad(\sqrt{ } 3)^{2}=(1 / 3)^{-1}$
d) $\quad 3^{2 x}=81^{0.5 x}$

## Solving Equations

We can also use this method of equivalent expressions to solve problems
If we know the expressions are equivalent and we have the same base then the exponents must be the same
i.e. Solve for $x$, given $3^{2 x}=81$

## Example

Solve for $x$
a) $\quad 4^{x}=16$
b) $\quad 9^{2 x}=27^{3}$
c) $\quad 4^{2 x+1}=2^{4}$

## Example

Find all possible values of x for $2^{x^{2}+3 x}=\frac{1}{4}$.

## Half-Life Problems

Radioactive material decays (half-life problems) according to the relationship

$$
A(t)=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}}
$$

where $\quad A(t)$ is the mass of the decayed material
$A_{0}$ is the mass of the original material
$t$ is the time
$h$ is the half-life
When solving these problems for time we need to use the strategies involved with equivalent expressions

Exponential growth problems can be modelled by

$$
A(t)=A_{0} b^{t}
$$

where $\quad A(t)$ is the amount after growth
$A_{0}$ is the original amount
b is the growth rate per time period
$t$ is the number of growth periods
NOTE: for growth problems b MUST be greater than 1. i.e. if growing by $5 \%, b=1+0.05=1.05$
Exponential decay problems can be modelled by

$$
\mathrm{A}(t)=A_{0} b^{t}
$$

where $A(t)$ is the amount after growth
$A_{0}$ is the original amount
$b$ is the growth rate per time period
$t$ is the number of growth periods
NOTE: for decay problems $b$ MUST be less than 1, i.e. if decaying by $5 \%, b=1-0.05=0.95$
If it decays by $5 \%$ then $95 \%$ remains

## Example

Bacteria quadruple in population every 6 hours
a) If you had 100 bacteria in a petrie dish for 100 hours how many bacteria would be present?
b) If you started with 100 bacteria and after a certain time had 25600, how long would have the bacteria been present?

## Example

Bunter bought a car for $\$ 18000$. The value of the car depreciates by $20 \%$ every year.
a) Write the equation that represents this relationship.
b) If Bunter owns the car for 4 years, what is the car's value.

## Homework:

Handout \#s 1, 2ac, 3aceg, 4aceg, 6ac, 8ace, 9ace, 15 \& 17
AND Nelson Page 261 \#s $2-5$ \& 10

