Solving Trigonometric Equations Cont'd...

Nelson Page 398 #s 1, 2, 4 & 8

Nov 4-10:28 AM

Solving Sine and Cosine Functions

Just like when we solve a linear equation we need to keep working backwards until we have isolated the variable.

We will do BEDMAS backwards with the trig ratio being like a bracket!

Apr 30-10:15

Apr 30-10:16

Apr 30-10:17

Example

Consider a function that has a max at 20, a min at 0, a period of 360° and increases through the axis of curve at x = 45.

for 0 ≤ x ≤ 360°.

Apr 30-10:24

Example A Ferris wheel has a radius of 7 m. The centre of the wheel is 8 m above the ground. The Ferris wheel rotates at a constant speed of
$$15^\circ$$
/s. The height above the ground of the only red seat can be modelled by the function $b(t) = 8 + 7 \sin(15^\circ t)$.

(a) Determine the height of the red seat at the start of the ride.

$$h(0) = 8 + 7 SIN(15(0)) = 8m$$

(b) What is the maximum height of any seat?

$$Max = c + |a| = 8 + |A| = 15m$$

(c) When is the red seat at its maximum height during the first rotation?

$$8+7.5N(15t) = 15$$
 $15t = 5N^{-1}(1)$
 $\frac{7.5N(15t)}{7} = \frac{7}{7}$ $\frac{15t}{15} = \frac{90}{15}$
 $5N(15t) = 1$ $f = 6$ seconds

(d) What is the minimum height of any seat?

$$Min = C - |a| = 8 - |A| = |m|$$

(e) When is the red seat at its minimum height during the first rotation?

$$8+7SIN(15t) = 1$$
 $15t = SIN^{-1}(-1)$
 $\frac{7}{7}SIN(15t) = \frac{-7}{7}$ $\frac{15t}{15} = \frac{270}{15}$
 $SIN(15t) = -1$ $t = 18$ seconds

(f) How long will it take for the red seat to complete two full rotations?

Period =
$$\frac{360}{K} = \frac{360}{15} = 24$$
 seconds
 \Rightarrow Two cers takes $2(24) = 48$ seconds

Apr 30-10:29

Mar 19-7:45 AM