Warm Up:

Find all solutions for θ , where $0 \le \theta \le 360$.

a)
$$\sin\theta = -0.6723$$
 b) $\cos\theta = 0.4291$ c) $\tan\theta = -1.237$

$$\Theta$$

$$\Theta = \mathcal{V}_{\text{MM}} \left(-1.53\right)$$

$$0 = 180 + 42$$

$$= 222^{\circ}$$

$$= 360 - 42$$

Trigonometric Identities

Lesson objectives

- I understand the Quotient Identity
- I understand the Pythagorean Identity
- I know how to use the two basic identities to simplify trigonometric expressions
- I know the different strategies used to prove trigonometric identities
- I understand that the identities need to be split into left side / right side
- I know how to apply the basic identities to make both sides equal

Lesson objectives

Teachers' notes

Lesson notes

Nelson Page 310 #s 2, 3, 5, 7 & 8abcd

Trigonometric Identities

Identity: a mathematical statement that is true for all values of the given variable. If the identity involves fractions, the denominators cannot be zero. Any restrictions on a variable must be stated.

- Identities are like puzzles: we have to rearrange equations until they match
- We set up identities in the form LS | RS (left side, right side) and cannot move terms or factors from one side to the other.
- We have 2 main identities from which many others can be formed.
- 1. Quotient Identity (Q.I.): 2. Pythagorean Identity (P.I.):

$$tan\theta = sin\theta \\ cos\theta$$

$$\sin^2\theta + \cos^2\theta = 1$$

Reciprocal Identities

Recall: we also have our reciprocal identities:

$$csc\theta = 1$$

$$\sec\theta = 1$$

$$\cot\theta = \frac{1}{\tan\theta}$$

Simplify the following expressions:

$$= \frac{680}{1} \times \frac{5/N0}{680}$$

b) cotθsinθ

$$=\frac{\cos\theta}{5440}\times\frac{5440}{1}$$

Pythagorean Identity

We can rearrange the Pythagorean Identity to get two slightly different identities:

$$\sin^2\theta + \cos^2\theta = 1$$
1. $\sin^2\theta + \cos^2\theta - \sin^2\theta = 1 - \sin^2\theta$ (subtract $\sin^2\theta$ from both sides)
$$\cos^2\theta = 1 - \sin^2\theta$$
2. $\sin^2\theta + \cos^2\theta - \cos^2\theta = 1 - \cos^2\theta$ (subtract $\cos^2\theta$ from both sides)
$$\sin^2\theta = 1 - \cos^2\theta$$

$$\frac{\sin^2\theta}{\sin^2\theta} + \frac{\cos^2\theta}{\sin^2\theta} = \frac{1}{\sin^2\theta} + \frac{\sin^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$$

$$1 + \cot^2\theta = \csc^2\theta$$

$$\tan^2\theta + 1 = \sec^2\theta$$

Simplify the following expressions:

a)
$$\underline{\sin\theta} + \underline{\cos\theta}$$
 b) $\underline{\sin\theta}(\csc\theta - \sin\theta)$
 $\underline{\csc\theta}$ sec θ

$$= \underbrace{SN\Theta} \times \frac{1}{(SC\Theta)} + \underbrace{CoS\Theta} \times \underbrace{SNO} \times$$

Tricks to Prove Identities:

There are multiple different strategies to prove identities, here are a few that might help you out!

- 1. Start with the side that looks the most complicated.
- 2. Change everything to $\cos\theta$ and $\sin\theta$ using the Quotient and Reciprocal Identities.
- 3. Look to apply the Pythagorean identity if you have a $\sin^2\theta$ or $\cos^2\theta$.

If you are still stuck after the first tricks look for the following:

- 1. Find a common denominator
- 2. Expand
- 3. Factor (either a common factor or decomposition)

Simplify
a)
$$tan\theta + cot\theta$$

$$= \frac{S/N\Theta}{COS\Theta} + \frac{COS\Theta}{S/N\Theta}$$

$$= \frac{S/N\Theta}{COS\Theta} + \frac{COS\Theta}{S/N\Theta} + \frac{(OS\Theta)(COS\Theta)}{S/N\Theta(COS\Theta)} = \frac{(1+S/N\Theta)(1-S/N\Theta)}{(SS\Theta(S/N\Theta)} + \frac{(OS\Theta)(COS\Theta)}{S/N\Theta(COS\Theta)} = \frac{1+S/N\Theta}{S/N\Theta(COS\Theta)}$$

$$= \frac{S/N^2\Theta}{S/N^2\Theta(COS\Theta)} + \frac{(OS\Theta)(COS\Theta)}{S/N^2\Theta(COS\Theta)} = \frac{1+S/N\Theta}{S/N^2\Theta(COS\Theta)} + \frac{1}{S/N^2\Theta(COS\Theta)} = \frac{1+S/N\Theta}{S/N^2\Theta(COS\Theta)} + \frac{1}{S/N^2\Theta(COS\Theta)} = \frac{1+S/N^2\Theta}{S/N^2\Theta(COS\Theta)} + \frac{1}{S/N^2\Theta(COS\Theta)} + \frac{1}{S/N^2\Theta(COS$$

Prove the following identities

a)
$$tan\theta + \frac{1}{tan\theta} = \frac{1}{sin\theta cos\theta}$$
b) $\frac{1}{1 + cos\theta} + \frac{1}{1 - cos\theta} = \frac{2}{sin^2\theta}$

$$= \frac{S/N\theta}{Cos\theta} + \frac{Cos\theta}{S/N\theta cos\theta}$$

$$= \frac{S/N^2\theta}{S/N\theta cos\theta} + \frac{Cos^2\theta}{S/N\theta cos\theta}$$

$$= \frac{S/N^2\theta + cos^2\theta}{S/N\theta cos\theta}$$

Prove the following identities

a)
$$tan\theta + \frac{1}{tan\theta} = \frac{1}{sin\theta cos\theta}$$
b) $\frac{1}{1 + cos\theta} + \frac{1}{1 - cos\theta} = \frac{2}{sin^2\theta}$

$$\frac{1(1 - cos\theta)}{(1 + cos\theta)(1 - cos\theta)} + \frac{1(1 + cos\theta)}{(1 - cos\theta)(1 + cos\theta)}$$

$$= \frac{1 - cos\theta}{(1 + cos\theta)(1 - cos\theta)}$$

$$= \frac{2}{1 - cos^2\theta} = RS$$

Prove the following identities

a)
$$tan\theta = \frac{sin\theta + sin^2\theta}{(cos\theta)(1 + sin\theta)}$$

b)
$$\underline{\sin^2\theta} = 1 + \cos\theta$$

1 - $\cos\theta$

$$=\frac{SN\Theta}{\cos\Theta}$$

where $\cos 4 + 0$ $5 \times 0 = 4 - 1$

Prove the following identities

a)
$$tan\theta = \frac{sin\theta + sin^2\theta}{(cos\theta)(1 + sin\theta)}$$
 b) $\frac{sin^2\theta}{1 - cos\theta} = 1 + cos\theta$

b)
$$\frac{\sin^2\theta}{\cos\theta} = 1 + \cos\theta$$

$$= \frac{1 - \cos^2\theta}{1 - \cos^2\theta}$$

$$= (1 + \cos\theta)(1 + \cos\theta)$$

$$= \frac{(1+\cos \theta)(1+\cos \theta)}{(1+\cos \theta)}$$

$$= 1+\cos \theta = RS$$
where $\cos \theta \neq 1$