Solutions

1. Find sin θ , cos θ , and tan θ for each triangle, expressed as fractions in lowest

 $sin(\theta) = opp/hyp$

 $\cos(\theta) = \frac{1}{2} \sin(\theta)$

 $tan(\theta) = opp/adj$

$$sin(\theta) = 12/15 = 4/5$$

$$cos(\theta) = 9/15 = 3/5$$

$$tan(\theta) = 12/9 = 4/3$$

$$sin(\theta) = 2/4.5 = 4/9$$

$$cos(\theta) = 4/4.5 = 8/9$$

$$tan(\theta) = 2/4 = 1/2$$

$$\sin(\theta) = 6/6.7 = 60/67$$

SOHCAHTOA

$$cos(\theta) = 3/6.7 = 30/67$$

$$tan(\theta) = 6/3 = 2$$

$$sin(\theta) = 25/54$$

$$cos(\theta) = 48/54 = 8/9$$

$$tan(\theta) = 25/48$$

 Find the three primary trigonometric ratios for ∠A, to four decimal places.

d) 3.3 cm B 5 cm

$$sin(A) = 7.5/15$$

= 0.5000

$$cos(A) = 13/15$$

= 0.8667

$$tan(A) = 7.5/13$$

= 0.5769

$$sin(\theta) = opp/hyp$$

6 cm C

$$sin(A) = 5/6$$

= 0.5000

$$cos(A) = 3.3/6$$

= 0.5500

$$tan(A) = 5/3.3$$

= 1.5152

$$cos(\theta) = adj/hyp$$

f) A 24.1 m 16 m

SOHCAHTOA

$$sin(A) = 18/24.1$$

= 0.7469

$$cos(A) = 16/24.1$$

= 0.6639

$$tan(A) = 18/16$$

= 1.125

$$tan(\theta) = opp/adj$$

- Evaluate each of the following with a calculator, rounded to four decimal places.
 - **b)** sin 45°
 - **d)** sin 37°
 - f) sin 0°
 - **h)** sin 30°
- b) 0.7071
- d) 0.6018
- f) 0.0000
- h) 0.5000

Recall:

Not all scientific calculators work the same way. With some, you press

With others, you press

On a graphing calculator, press

TAN 25 () (=)

Make sure your calculator is in degree mode.

Obviously, TAN could be SIN or COS depending upon the information given in the question.

- Find the measure of each angle, to the nearest degree.
 - **b)** $\sin \theta = 0.5032$
- b) $\theta = 30^{\circ}$
- **d)** $\sin S = \frac{2}{3}$
- d) $S = 42^{\circ}$
- f) $\sin A = 0.9511$
- f) $A = 72^{\circ}$
- **h)** $\sin \theta = \frac{2}{5}$
- h) $\theta = 24^{\circ}$
- j) $\sin \theta = 0.9976$
- j) θ = 86°
- $\sin \theta = 0$
- I) $\theta = 0$ °

Recall: With some scientific calculators, you press 2nd [TAN-1] 0.5 =

> With others, you press 0.5 (2rd) [TAN-1]

Obviously, TAN could be SIN or COS depending upon the information given in the question.

10. Find the length of x, to the nearest tenth of a unit, by applying the sine ratio.

24 cm

a) $\sin(25) = x/13$

$$13\sin(25) = x$$

$$5.5 \text{ cm} = x$$

c) $\sin(33) = x/24$

$$24\sin(33) = x$$

13.1 cm = x

- e) 55 cm.
- e) $\sin(61) = x/55$

$$55\sin(61) = x$$

$$48.1 \text{ cm} = x$$

g) $\sin(55) = 15/x$

$$xsin(55) = 15$$

$$x = 15/\sin(55)$$

$$x = 18.3 cm$$

c)

10. Find the length of x, to the nearest tenth of a unit, by applying the sine ratio.

h) 18 cm $sin(\theta) = opp/hyp$

b)
$$\sin(66) = 5.6/x$$

$$xsin(66) = 5.6$$

$$x = 5.6/\sin(66)$$

$$x = 6.1 cm$$

$$sin(\theta) = opp/hyp$$

d)
$$\sin(65) = x/32$$

$$32\sin(65) = x$$

$$29.0 \text{ cm} = x$$

f)
$$\sin(50) = 12/x$$

$$xsin(50) = 12$$

$$x = 12/\sin(50)$$

$$x = 15.7 cm$$

h)
$$sin(41) = 18/x$$

$$xsin(41) = 18$$

$$x = 18/\sin(41)$$

$$x = 27.4 cm$$

In △DEF,

DF = 6.0 km

 $\angle E = 44^{\circ}$

 $\angle F = 90^{\circ}$

a) Draw this triangle and label the given information.

b) Solve △DEF.

$$sin(\theta) = opp/hyp$$

b) Solving a triangle means to find all the missing information.

$$<$$
D = 180 - 90 - 44

$$< D = 46^{\circ}$$

$$\sin(44) = 6/x$$
 $\sin(46) = y/8.6$

$$x\sin(44) = 6$$
 8.6 $\sin(46) = y$

$$x = 6/\sin(44)$$
 6.2 km = y

$$x = 8.6 \text{ km}$$

21. A tree is splintered by lightning 2 m up its trunk, so that the top part of the tree touches the ground. The angle the top of the tree forms with the ground is 70°. Before it was splintered, how tall was the tree, to the nearest tenth of a metre?

 $sin(\theta) = opp/hyp$ sin(70) = 2/x xsin(70) = 2 x = 2/sin(70)x = 2.1 cm2 m

Height of tree =
$$2 + x$$

= $2 + 2.1$
= 4.1 metres

33. Find the length of *x*, to the nearest tenth of a metre, then the measure of *y*, to the nearest degree.

$$sin(\theta) = opp/hyp$$

A good strategy is often to solve the variables in alphabetical order. In this case we have to, because we need to know x to solve for y.

$$sin(48) = x/10$$
 $sin(y) = 7.4/12$
 $10sin(48) = x$ $y = sin^{-1}(7.4/12)$
 $7.4 \text{ cm} = x$ $y = 38^{\circ}$