Use Similar Triangles to Solve Problems

Lesson objectives

- I know how to calculate the scale factor of similar triangles
- I know how to calculate the lengths of corresponding sides of similar triangles using proportional reasoning
- I know how to calculate the perimeter and area of similar triangles

Lesson objectives

Teachers' notes

esson notes

MHR Page 347 #s 1, 2, 5, 6bcd, 7, 8cd, 9, 12 & 19

Similar Triangles

Once we know our triangles are similar, we can find the scale factor, k between the triangles. Scale factor = $\frac{\text{Big}}{\text{Small}}$

We have to find matching sides and determine the proportion between them.

Example - Find the scale factor between the triangles.

Scale factor =
$$\frac{\text{Big}}{\text{Small}}$$

 $k = \frac{8}{6} \implies k = \frac{4}{3}$

$$\sum_{XZ=K} (AC)$$

$$XZ = \frac{4}{3}(8)$$

$$XZ = \frac{10^{2}}{3}$$

$$XZ = \frac{10^{2}}{3}$$

$$YZ = K(BC)$$

 $YZ = \frac{4}{3}(10)$
 $YZ = 13\frac{1}{3}$ cm

$$\frac{XZ}{AC} = \frac{XY}{AB}$$

$$\frac{XZ}{AC} = \frac{8}{686}$$

$$\frac{XZ}{8} = \frac{8}{686}$$

$$\frac{XZ}{8} = \frac{8}{686}$$

$$\frac{XZ}{8} = \frac{8}{686}$$

$$\frac{XZ}{8} = \frac{XY}{AB}$$

$$\frac{YZ}{BC} = \frac{XY}{AB}$$

$$\frac{YZ}{BC} = \frac{8}{686}$$

$$\frac{YZ}{AB} = \frac{8}{686}$$

$$\frac{YZ}{AB$$

Example - Find the perimeter and area of the ΔXYZ .

Since the lengths of \triangle ABC are 4/3 times bigger, the perimeter will also be 4/3 times bigger.

Perimeter $\Delta XYZ = k x Perimeter \Delta ABC$

Perimeter $\Delta XYZ = 4/3 \times (6 + 10 + 8)$

Perimeter $\Delta XYZ = 4/3 \times 24$

Perimeter $\Delta XYZ = 32$ cm

We can extend this to say that the area of $\triangle ABC$ is $(4/3)^2$ times bigger than the area of $\triangle XYZ$

Area $\triangle XYZ = k^2 x Area \triangle ABC$

Area $\Delta XYZ = (4/3)^2 \times (1/2 \times 6 \times 8)$

Area $\Delta XYZ = 16/9 \times 24$

Area ΔXYZ = 42.666... cm²

2 cm 4 cm 8 cm

Scale factor = $8 \div 4 = 2$ Area = $2^2 = 4 \times 10^2$ Area = $2^2 = 4 \times 10^2$

Scale factor = $12 \div 4 = 3$ Area = $3^2 = 9 \times 6$ bigger

If we increase the number of rows by a factor of k then we also increase the number of columns by a factor of k, so the area is increased by a factor of k^2 .