This add shows the cost of two different seasons pass options at a local ski hill.

Write an equation that relates the **total cost**, *C*, in dollars, and the **number of days**, *n*, that a person goes skiing for each of the rates.

Standard Rate

where C = Cost (\$) and n = number of days skiing.

Graph both relations on the same grid. Use two different colours, one for each line. Make sure to label each equation.

MTH1W Grade 9 Mathematics

3.6 Solving Problems with Linear Relations

Goal(s)

- To write an equation to represent a linear relationship and solve the equation to determine a piece of information.
- Explain the meaning of the point of intersection of two linear relationships.
- Solve real-world problems involving linear relationships

Page 134 #s 1 - 4, 5abcd, 6

A **linear system** is created when two or more linear equations are considered at the same time.

The point of intersection represents the solution to the system. It is a set of ordered pairs that make all equations in the system true.

Solution: (10, 500)

$$C = 50n$$

 $RS = C$ $LS = 50n$

$$5\infty = 50(10)$$
 $5\infty = 40(10) + 100$
 $5\infty = 5\infty$ $5\infty = 400 + 100$
 $5\infty = 5\infty$ $5\infty = 5\infty$ $5\infty = 5\infty$

$$C = 40n + 100$$

$$RS = C \qquad LS = 40n + 100$$

$$500 = 40(10) + 100$$

A linear system with two parallel lines will have no solution.

A linear system with two nonparallel lines will have one solution.

A linear system with two identical lines will have an infinite number of solutions.

The graph below shows the cost of renting a moving truck from **Strong Movers**. The initial cost of their competitors, **Pack-n-Haul**, is **\$10 more**, but they **charge half as much per kilometre**.

- a) How would the graph of Pack-n-Haul compare to the graph for Strong Movers?
- b) Write an **equation** to represent the cost
- (*C*) of renting from Pack-n-Haul for *d* kilometres.
- c) Determine by graphing, when the cost to rent a moving truck is the same for both companies.
- d) If your move is **47** km away, which company should you call?

The graph below shows the cost of renting a moving truck from **Strong Movers**. The initial cost of their competitors, **Pack-n-Haul**, is **\$10 more**, but they **charge half as much per kilometre**.

a) How would the graph of Pack-n-Haul compare to the graph for Strong Movers?

Graph will start at \$20, but the rate of change (steepness) will be half as much.

The graph below shows the cost of renting a moving truck from **Strong Movers**. The initial cost of their competitors, **Pack-n-Haul**, is *\$10 more*, but they *charge half as much per kilometre*.

b) Write an **equation** to represent the cost

(*c*) of renting from Pack-n-Haul for *d* kilometres.

Strong Movers

$$\longrightarrow$$
 C = 10 + 5d

Pack-n-Haul

$$C = 20 + 2.50$$

rate is half as much

The graph below shows the cost of renting a moving truck from **Strong Movers**. The initial cost of their competitors, **Pack-n-Haul**, is **\$10 more**, but they **charge half as much per kilometre**.

c) Determine by graphing, when the cost to rent a moving truck is the same for both companies.

It looks like that when d = 4 the prices will be the same (\$30). This is where the graphs intersect.

The graph below shows the cost of renting a moving truck from **Strong Movers**. The initial cost of their competitors, **Pack-n-Haul**, is **\$10 more**, but they **charge half as much per kilometre**.

d) If your move is **47** km away, which company should you call?

We can see that once you are moving more than 4km away that Pack-n-Haul will be cheaper than Strong Movers.

