Solutions

Page 124 #s 2, 3, 4, 5, 7, 10, 14cd, 17

- 2. A full jar of candies contains 60 candies. Each day, 4 candies are removed from the jar.
 - a) Complete a table of values showing the number of candies in the jar after 0, 1, 2, 3, 4, 5 and 6 days.
 - b) Sketch a graph to show the number of candies in the jar each day from the time it is full to the time it is empty.
 - c) Identify the initial value and rate of change for the number of candies in the jar.
 - d) Create an equation to model the number of candies in the jar, *n*, after *t* days.
 - e) For what values of t does your equation apply?

- 3. A linear relationship between volume and time is described by the given start value and rate. Determine an equation to model the volume (V) at a given time (t).
 - a) Start: 8 L Rate: 3 L/min
- b) Start: 540 mL Rate: -20 mL/s
- c) Start: 0 cm³ Rate: 5 cm³/min
- d) Start: 30 gal Rate: 0 gal/min

Dependent = Initial + Rate x Independent variable value + Rate x Variable

a)
$$V = 8 + 3t$$

b)
$$V = 540 - 20t$$

c) V=0+5t

$$U = 30 + 0t$$

$$U = 30 + 0t$$

4. For each of the following linear relations, state the start value (initial value) and the rate of change. It is not necessary to include units in your answers.

a)
$$V = 50 + 2t$$
 b) $V = 50 - 2t$

c)
$$A = 350 + 40n$$

d)
$$p = 10n + 25$$

hitial = 50 hitial = 50 hitial = 350 hitial = 25 value = 25 value = 25 Rof C = 2 Rof C = 40 Rof C = 10

e)
$$y = 125x - 30$$

e)
$$y = 125x - 30$$
 f) $d = -\frac{2}{3}n - 90$ g) $v = -9.8t$

g)
$$v = -9.8$$

h)
$$d = 16$$

Initial = -30 Initial = -90 Initial = 0 Initial = 16 value = 16 value = 18 Ref C = -9.8 Ref C = 0

- You can estimate your maximum heart rate, in beats per minute (bpm), by subtracting your age from 220.
 - a) Create an equation to model maximum heart rate (H) for a given age (x).
 - b) Use your equation to estimate your maximum heart rate.

(a) Initial value = 220

Rate of change = -1 per year

$$H = 220 + (-1)(x)$$

$$H = 220 - x$$

b) Max heart rate = 220 - "your age"

- 7. For each of the following linear relations,
 - i) state the initial value.
 - ii) state the rate of change.
 - iii) determine an equation to model the relationship.

8	ı)	Time (s)	Distance (m)		Number of People	Cost (\$)	c)	Time (min)	Depth (m)	
		0	20	10	- 0	100 ~	150	0	110	
1.	_	1	50		10	250	σν'	5	90	
' '	٦	2	80	30	20	400		10	70	
		3	110		30	550		15	50	
		4	140		40	700		20	30	
										,

In itial value is the dependent value when the independent value is zero Rate of change = $\frac{\text{rise}}{\text{cun}}$

Volume Mass (gal) (lb)

a) Initial = 20
Value

Ref C =
$$\frac{30}{7}$$

= 30
 $= 15$
 $d = 20 + 30t$

b) Initial = 100

Value

For C = $\frac{150}{10}$
 $= 15$
 $= 15$

7. For each of the following linear relations,							
i) state the initial value.							
ii) state the rate of change.							
iii) determine an equation to model the relationship.							
a) Time Distance (s) (m) 0 20 1 50 2 80 3 110 4 140 b) Number Cost of People (\$) 0 100 10 250 20 400 30 550 4 10 700 c) Time (min) (m) 0 100 0 110 0 0 0 100 5 90 10 70 15 50 20 30 c) Time (min) (m) 0 110 0 0 0 124 40 248 60 372 80 496							
In itial value is the dependent value when the independent value is zero							
the independent value is 200							
Rate of change = CISE							
c) Initial = 100 d) Initial = 0 value $\frac{-20}{5}$ R of $C = \frac{124}{20}$							
Value 124							
$Rof C = \frac{-20}{20}$							
ROTC - 5							
= -4							
$\Rightarrow d = 100 + (4)(4) \Rightarrow m = 0 + \frac{31}{5} $							
5							
$d = 100 - 4t$ $m = 31 \times 62$							
5 6.2							

10. Initially, only one person in a small town is infected with a virus. With each passing day, the

- 10. Initially, only one person in a small town is infected with a virus. With each passing day, the number of infected people doubles.
 - b) Use your table of values to sketch a graph of this relation.
 - c) Is the relationship between the number of infections and the number of days linear or non-linear? Explain.
 - d) Calculate the first differences for the table. Do you notice a pattern?
 - e) Suggest an equation that could be used to relate the number of infected people to the number of days passed.

b)
Hof
intected
people
Days

c) Non-linear. Rate of change is not constant.

d) The differences have the same values as the number infected.

e) $I = 2^d$ I = # infected, d = # of days

14. Each of the following describes a linear relation between the variables *x* and *y*. Determine an equation to model each relationship.

$$Rof C = \frac{120}{6}$$

$$\Rightarrow y = 30 + 0x$$

$$= 9 = 4.5 - \frac{3}{4}x$$

14. Each of the following describes a linear relation between the variables *x* and *y*. Determine an equation to model each relationship.

$$Rof C = -\frac{15}{2}$$

$$y = 0 + \frac{-15}{2}x$$

$$y = -\frac{15}{2}x$$

Find an equation for the linear relation shown in the graph on the right.

$$R \text{ of } C = \frac{80}{10}$$

180

using the point from the graph (4,70)

$$\Rightarrow$$
 $70 = ? + 8(4)$
 $9 \Rightarrow 70 = ? + 32$

$$70-32 = ?+32-32$$

$$\implies$$
 Equation is $y = 38 + 8x$