Solutions 1. How many different sums of money can be made from a \$5 bill, a \$10 bill, a \$20 bill, and a \$50 bill? Must use at least are bill L(1 + 4C2 + 4C3 + 4C4 = 4 + 6 + 4 + 1 = 15 different sums Lan have 4 bills. You can use all or some of then. 24 - 1 Subtract the mill set. We can't choose zero bills. (2 options) = 16 - 1 = 15 different sums - 2. In how many ways could a group of 10 people form a committee with at least 8 people on it? - A 45 B 56 C 450 D 1016 At least 8 from 10 => 8 people OR 9 people OR 10 people 10C8 + 10C9 + 10C10 = 45 + 10 + 1 = 56 ways => B 3. If a set has 12 elements, how many subsets can be formed? A 12 B 24 C 4095 **D** 4096 must choose something so the muy set is not included. => 12C1 +12C2+12C3 + +12C11 +12C12 = 4095 => C OB use the indirect method 12 elements can be either chasen or not chasen = 4096-1 = 4095 =>> C - 4. A judging panel will have 6 members chosen from 8 teachers and 10 students. There must be at least 3 students on the panel. In how many ways could there be - a) 3 students on the panel? - b) 4 students on the panel? - c) 5 students on the panel? - d) least 3 students on the panel? - a) 3 students => 3 teachers 10 C3 × 8 C3 = 120 × 56 = 6720 ways - b) 4 students => 2 teachers $10^{C}4\times8^{C}2 = 210\times28 = 5880 \text{ ways}$ - c) 5 students => 1 teacher $10^{C_5} \times 8^{C_1} = 252 \times 8 = 2016$ ways - d) Only stipulation is at least 3 students \Rightarrow can have either of (a), (b), (c) or also - can have either of (7), (7 - 5. Communication Identify whether the following situations involve permutations, combinations, or both. Justify your choice. - a) forming a committee of 5 people from a group of 12 people Combinations - order is not important c) choosing 4 men and 4 women to be on a basketball team from among 6 men and 6 women, and assembling the athletes for a team photo Both - combinations for b) choosing a president, a vice president, and a treasurer from a committee of 12 members Permutations - Specific roles are assigned, so the order is important d) naming 3 people from among 15 contestants to win 3 different prizes Permutations - wining different prizes, so the order is important