

Inverse Relations

Lesson objectives

- I know how to find the inverse equation of a function
- I know how to find the domain and range of the inverse from the original function

Lesson objectives

Teachers' notes

Lesson notes

Nelson Page 46 #s 2ace, 3, 6bdf, 9, 10 & 17

Inverse Function

The reverse of the original function - it undoes what the original function has done.

Example:

If the function is putting on your socks, then your shoes, what would the inverse function be?

Shoes off, then socks off

Inverse Functions - Equation

Example: Write out the steps you would use to evaluate the following function for a given value

of x.
$$y = 3\sqrt{x-2} + 4$$

Inverse operations in reverse order:

 $y - 3\sqrt{x} - 2 + 4$ $y - 4 = 3\sqrt{x} - 2$ 3

Subtact 4

 $y^{-4} = \int x^{-2}$

divide by 3

 $\frac{\sqrt{3}}{(4)^{-4}} = x^{-2}$

square both sides

add 2

 $(\frac{9-4}{3})+2=x$

Inverse Functions - Equation

To determine the inverse equation we need to isolate for the independent variable and then switch the variables.

The inverse function is represented by: $f^{-1}(x)$

which is different from: $[f(x)]^{-1}$

Inverse Function - Graphs and Ordered Pairs

In terms of the graph and ordered pairs the reverse of the original is found by simply switching the x and y values.

The graph of the inverse is the reflection of the graph of y = f(x) in the line y = x.

$$f(x) = (domain, range)$$

 $f^{-1}(x) = (range, domain)$
They switch!

Determine the inverse function.

a)
$$f(x) = \frac{3}{4}x + 2$$

b)
$$g(x) = -2\sqrt{x+3} - 4$$

$$y = \frac{3}{4}x + 2$$

$$y = -2)x+3-4$$

$$x+4 = -2\sqrt{9+3}$$

$$4(x-2)=\frac{39}{3}$$

$$\cancel{\times}^{+4} = \cancel{\cancel{5}}^{+3}$$

$$\frac{3}{(-1/x)} = \frac{4(x-2)}{3}$$

$$\left(\frac{x+4}{2}\right)^2 = 9+3$$

$$f^{-1}(x) = \left(\frac{x+4}{-2}\right)^2 - 3$$

$$f'(x) = \frac{(x+4)^2}{4} - 3$$

Example:

Determine the inverse relation for each ordered pair.

a)
$$\{(-2,3),(0,4),(2,5),(4,6)\}$$

b)
$$\{(2,5),(2,-1),(3,1),(5,1)\}$$

$$\left\{ (2,5), (2,-1), (3,1), (5,1) \right\}$$

$$\left\{ (5,2), (-1,2), (1,3), (1,5) \right\}$$

