Solutions

Page 42 #s 1, 2, 3, 6ace, 7ad, 11abd, 12aceg
Page 44 # 16

1. State three numbers between 0 and 1.

Anything starting O." or This small

2. State four rational numbers between 3 and 4.

Anything starting "3." or 3 = 5

3. List all of the natural numbers from 1 through 5. Is this task easy to complete? Why or why not?

1,2,3,4,5

Easy. There are only 5 values in this FINITE SET.

- 6. a) How many natural numbers are there from 1 through 10?
 - c) How many rational numbers are there from 1 through 10?
 - e) How many real numbers are there from 1 through 10?

a) 10 numbers (1,2,3,4,5,6,7,8,9,10)

c) Infinite. We can always squeeze another element into this set.

e) Same as c). Infinite with the same reasoning.

- 7. State which set is denser (has higher density).
 - a) The set of whole numbers between 0 and 30 or the set of rational numbers between 0 and 30.
 - d) The set of even numbers between -50 and -20 or the set of irrational numbers between -50 and -20.

a) Whole numbers from 0 to 30 is finite. Rational numbers from 0 to 30 is infinite. => Rational numbers are desser.

d) Even numbers from -50 to -20 is finite. Irrational numbers from -50 to -20 is infinite. => Irrational number are dever.

- 11. The following sequences of numbers each have a limit. That is, they gradually get closer and closer to a specific number, called the *limit*. Identify the limit of each of the following sequences.
- a) 7.1,7.01,7.001,7.0001,... b) $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$,... d) 0.3,0.33,0.333,0.3333,...

a) The limit is 7

- b) The limit is O
- c) The limit is \frac{1}{3}

Recall: = 0.33333... "the 3 continues

- 13. For each of the following expressions, imagine the value of n getting higher and higher. What happens to the value of the expression as n approaches infinity?
 - a) n
- c) n^2 e) $\frac{1}{n^2}$
- g) $\frac{n}{n^2-5}$

 α) $n \longrightarrow \infty$

$$\Rightarrow \land \longrightarrow +\infty$$

 $e) \sim \infty$

 $\Rightarrow \frac{1}{n^2} \rightarrow \frac{1}{\infty}$

 $9) \quad \wedge \longrightarrow \infty$ Bottom becomes much bigger than the top

16. Did you know it is possible to add infinitely many values and get a result that is not infinity? Consider the following sum.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

- a) Hypothesize the value of this sum.
- b) Use an area diagram to verify your hypothesis.

a) It like the blueberry pie question.
This time we ove adding up how
much has been eaten. Limit -> 1

Ь)

