Introduction to Probability

Extra Practice

Page 58 #s 1 - 8 plus BONUS

Solutions

1. A married couple decides to have two children. Assuming that they do, what is the probability that they will either have two boys or two girls?

A 0.125

B 0.25

C 0.5

 $\mathbf{D} \quad 0.\overline{6}$

Dependent events Q = P(2 Bays or 2 Girls) = P(2 Bays) + 1

2. Natalie logged on to a social media website 50 times. Fifteen of those times she encountered a pop-up advertisement. What is the experimental probability that Natalie will see a pop-up at this site?

A 7.5%

B 15%

C 30%

$$P(Pop-up add) = \frac{15}{50}$$

= $\frac{3}{10}$
= 30% \Rightarrow C

- 3. This spinner is spun 20 times and lands on green 5 times. Identify the true statement.
- 5 1 2 3
- A The theoretical probability of landing on green is 20% and the experimental probability of landing on green is 20%.
- green is 20%.

 B The theoretical probability of landing on green is 20% and the experimental probability of landing on green is 25%.
- C The theoretical probability of landing on green is 25% and the experimental probability of landing on green is 20%.
- D The theoretical probability of landing on green is 25% and the experimental probability of landing on green is 25%.
- Theoretical $P(Green) = \frac{1}{5} (20\%)$ Experimental $P(Green) = \frac{5}{20}$ $= \frac{1}{4} (25\%)$ = 8

4. A fair coin is flipped four times. What is the probability that it will land heads exactly once?

Four times $\Longrightarrow 2\times2\times2\times2=16$ outcomes Head on first flip, other three flips tails $= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$ Head on second flip, other three flips tails $= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$ Head on third flip, other three flips tails $= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$ Head on fourth flip, other three flips tails $= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$ $\Rightarrow \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{4}{16}$ $\Rightarrow \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{4}{16}$

- 5. Marlis feels 80% confident that she will pass her driver's exam.
 - a) What type of probability is Marlis using? Explain your choice.

ubjective - no data to justify this prediction, it is based on a b) What are the odds in favour of Marlis passing her driver's exam, based on her probability estimate? Justify your reasoning.

80% pass, so it must be 20% fail Odds in favour 80 = 20

6. Tenzin is playing a carnival game in which he throws a dart at the target shown below. Assuming that he is equally likely to hit any point on the target, what is the probability Tenzin wins the following on a given throw?

- a) a big prize
- b) a small prize

a small prize

Area of big prize =
$$\pi r^2$$

= $\pi \left(\frac{10}{2}\right)^2$

= $\pi(25)$

= $\pi(25)$

b) Area of Small prize = $\frac{900-25\pi}{2}$ = 410.730

 $\Rightarrow P(Small prize) = \frac{410.73}{900} = 45.6\%$

- 7. In a game involving two standard dice, you win if you roll a sum of 7 or 11, or if you roll doubles (both dice showing the same
- a) What are the odds against you winning this game?
- b) Explain how you solved this problem.

$$P(\omega;n;n_{2}) = P(7) + P(1) + P(double)$$

$$= \frac{6}{36} + \frac{2}{36} + \frac{6}{36}$$

$$= \frac{14}{36}$$

$$= \frac{7}{8}$$

a) 7 wining => 1/8 not wining odds against winning

11 : 7

(x by 18) 11:7

b) Identify the favourable outcomes (14).
Identify the total number of outcomes (36).
Express the probability of winning and hence not winning. Write the ratio and simplify.

- 8. Mr. Dobson's tie rack is shown below.
- a) a solid blue tie or a polka dot tie?

- b) a striped tie or a solid coloured tie?
- c) a solid black tie or a striped tie?
- d) a solid coloured tie or a solid blue tie?

What is the probability that Mr. Dobson

randomly selects

a)
$$P(SB \circ PD) = P(SB) + P(PD)$$

$$= \frac{1}{8} + \frac{1}{8}$$

$$= \frac{2}{8} = \frac{1}{4}$$

d)
$$P(SC \text{ or } SB) = P(Sc) + P(SB) - P(SC \text{ and } SB)$$

= $\frac{3}{8} + \frac{1}{8} - \frac{1}{8}$
= $\frac{3}{8}$

A pencil case contains 4 yellow, 3 green, and 2 pink highlighters. Without replacement, what is the probability that you select

a) A yellow, followed by a green

$$P(YG) = P(Y) \times P(G|Y)$$

$$= \frac{4}{9} \times \frac{3}{8} = \frac{1}{6}$$

b) A yellow, followed by a yellow, followed by a pink

c) A green, followed by a pink

$$P(GP) = P(G) \times P(P(G))$$

$$= \frac{3}{9} \times \frac{2}{8} = \frac{1}{12}$$

d) Not a yellow, followed by a yellow

$$P(Y'Y) = P(Y') \times P(Y|Y')$$
$$= \frac{5}{9} \times \frac{4}{8} = \frac{5}{8}$$