Warm Up:

Convert
$$y = -2x^2 + 8x - 10$$
 to vertex form
$$= -2(x^2 - 4x) - 10$$

$$= -2(x^2 - 4x + (-2)^2 - (-2)^2) - 10$$

$$= -2(x^2 - 4x + (-2)^2) - (-2)(-2)^2 - 10$$

$$= -2(x^2 - 4x + (-2)^2) - (-2)(-2)^2 - 10$$

$$= -2(x^2 - 2)^2 - (-8)^{-10}$$

$$= -2(x^2 - 2)^2 - (-8)^{-10}$$

$$= -2(x^2 - 2)^2 - (-8)^$$

Solving Word Problems

Lesson objectives

- I know how to identify if the problems are about the zeros, vertex, or y-intercept
- I know how to choose the appropriate tool to find the missing information in the question
- I know how to use the information in previous sections of a question to solve the next part

Lesson objectives

Teachers' notes

Lesson notes

Nelson Page 178 #s 6 - 14

Problem Solving with Quadratics

When we have a word problem that is centred around a quadratic, we are essentially asking one of three questions:

1. What is the vertex?

Maximum, minimum problems

2. What are the zeros?

When will it land? How long in the air for?

3. What is the y-intercept?

Starting height?

The path of a firework is modelled using the equation $h = -5d^2 + 20d + 1$, where h is the height in metres above the ground and d is the horizontal distance, in metres. What is the maximum height of the firework?

a) From what height is the rocket shot into the air?

This is when d=0 (which is the y-intercept)

b) What is the maximum height of the firework?
$$-\frac{b}{2a} = \frac{-20}{2(-5)}$$

$$= \frac{-20}{-10}$$

$$= 2$$
Find height when $d = 2$

$$= -5(2)^2 + 20(2) + 1$$

$$= -20 + 40 + 1$$

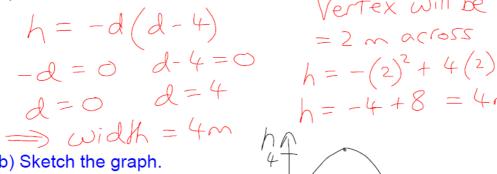
$$= 21 \text{ metres}$$

c) How far (horizontally) does the firework travel?

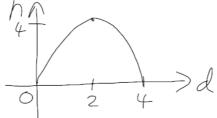
$$a = -5, b = 20, c = 1$$

$$d = -20 \pm \sqrt{(20)^2 + (-5)(1)}$$

$$2(-5)$$


$$d = -26 \pm \sqrt{420}$$

$$-10$$


$$d = -20 \pm \sqrt{420}$$

An equipment storage shed has a parabolic cross section modelled by the relation $h = -d^2 + 4d$, where h is the height in metres and d is the horizontal distance, in metres, from one edge of the shed.

a) How wide and how tall is the shed.

b) Sketch the graph.

Vertex will be 0+4

h = -4 + 8 = 4m tall

c) For what values of d is the relation valid? Explain.

The profit function for a business is given by the equation $P = -4x^2 + 16x - 7$, where x is the number of items sold, in thousands, and P is the profit in thousands of dollars.

a) Calculate the maximum profit and how many items must be sold to achieve it. Sub in x = 2

$$\frac{-b}{2a} = \frac{-16}{2(-4)}$$

$$P = -4(2)^{2} + 16(2) - 7$$

$$P = -16 + 32 - 7$$

$$P = -16$$

$$P = 9$$

$$= \frac{-16}{-8}$$

$$=$$

b) How many items must be sold to break even?

Break even when selling 500 (or 3500) items

A factory is to be built on a lot that measures 80m by 60m. A lawn of uniform width, equal to the area of the factory, must surround it.

a) Draw a diagram to represent the situation.

let the lann width=x length of factory = 80-2x width of factory = 60-2x

b) How wide is the strip of lawn, and what are the dimensions of the

actory?

Area of lot =
$$80 \times 60^{2}$$

= 48000

$$= (80-2x)(60-2x)=2400$$

$$4800 - 160x - 120x + 4x^{2} = 1400$$

$$4x^{2} - 280x + 2400 = 0$$

$$x^{2} - 70x + 600 = 0$$